
LOGARITHMIC BUNDLES AND LINE ARRANGEMENTS,

AN APPROACH VIA THE STANDARD CONSTRUCTION

DANIELE FAENZI AND JEAN VALLÈS

Abstract. We propose an approach to study logarithmic sheaves TPn(− logDA) asso-
ciated with hyperplane arrangements A on the projective space Pn, based on projective
duality, direct image functors and vector bundles methods.

We focus on free line arrangements admitting a point with high multiplicity, or having
low exponents, proving Terao’s conjecture in this range.

Introduction

Let k be a field, and let A = (H1, . . . ,Hm) be a hyperplane arrangement in Pn = Pnk,
namely the Hi’s are distinct hyperplanes of Pn. The module of logarithmic derivations
along the hyperplane arrangement divisor DA = H1 ∪ · · · ∪ Hm, and its sheaf-theoretic
counterpart TPn(− logDA) (Saito’s sheaf of logarithmic vector fields) play a prominent
role in the study of A; let us only mention [Ter81,Sch00].

One main issue in the theory of arrangements is to what extent the sheaf TPn(− logDA)
depends on the combinatorial type of A, defined as the isomorphism type of the lattice LA
of intersections of hyperplanes in A. This lattice is partially ordered by reverse inclusion,
and is equipped with a rank function given by codimension (cf. [OT92]). An important
conjecture of Terao (reported in [OT92]) asserts that if A and A′ have the same combi-
natorial type, and TPn(− logDA) splits as a direct sum of line bundles (i.e. A is free), the
same should happen to TPn(− logDA′).

In this paper we study the sheaf TPn(− logDA) relating it to the finite collection Z of
points in the dual space P̌n associated with A (we write A = AZ when Z = {z1, . . . , zm}
satisfies Hi = Hzi for all i, where Hz ⊂ Pn denotes the hyperplane corresponding to
a point z ∈ P̌n). Our first result is that TPn(− logDAZ

) is obtained via the so-called
standard construction from the ideal sheaf IZ(1). More precisely, denoting by F the
incidence variety F = {(x, y) ∈ Pn × P̌n | x ∈ Hy} and by p and q the projections onto Pn
and P̌n, Theorem 1 states that:

TPn(− logDAZ
) ' p∗(q∗(IZ(1))).

On the projective plane, we push this a bit further in two directions, namely to higher
direct images and to higher rank bundles. This is the content of Theorem 2, where we
prove that R1p∗(q

∗(IZ(d))) is supported on points of multiplicity d + 2 of AZ and that

p∗(q
∗(IZ(d))) is a vector bundle of rank d+ 1 and c1 =

(
d+1

2

)
−m. For d ≥ 2, this vector

bundle corresponds to the derivations of higher order with poles along DAZ
; it will be

studied in more detail in a forthcoming paper.
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Next we make use of the dual picture to show how to obtain special derivations i.e.,
sections of TP2(− logDAZ

) from points of high multiplicity in AZ . By this observation, we
show that a line arrangementAZ with a point of multiplicity k is free with exponents (k, k+
r) if and only if c2(TP2(− logDAZ

)) = k(k+r), see Theorem 3. Here, by definition, AZ free
with exponents (k, k + r) means that TP2(− logDAZ

) ' OP2(−k) ⊕OP2(−r − k), and we
write Chern classes on Pn as integers, with obvious meaning. Note that the second Chern
class is a very weak invariant of the combinatorial type of AZ . For real arrangements,
using a theorem of Ungar, one can push this criterion to points of multiplicity k−1, under
the assumption that k ≤ 3r + 5, see Theorem 5.

Further on, we study the restriction of TP2(− logDAZ
) on a line H in P2. This bundle

splits as OH(−a)⊕OH(−b) for some a ≤ b. In Theorem 4 we use the blow-up of the dual
plane P̌2 to show that, if H is general enough, then a is the minimal integer d such that
there exists a curve of degree d + 1 in the dual plane P̌2 passing through Z and having
multiplicity d at a general point of P̌2. If the line H is not general, then d and a depend
on H, and we show that a − d is between zero and the number of triple points (counted
with multiplicity) lying of H.

Finally, we show that Terao’s conjecture holds for free line arrangements with exponents
(k, k + r) in the range 1 ≤ k ≤ 5, r ≥ 0. This is the content of Theorem 6, whose proof
relies on Hirzebruch’s inequality. As a corollary, we show that freeness is a combinatorial
property for up to 12 lines (Corollary 6.3).

The paper is organised as follows. In the next section we set up the main correspondence
between ideal sheaves of points in P̌n and the sheaf of logarithmic derivations on Pn.
Section 2 contains the description of higher direct images and higher rank bundles. Section
3 is devoted to line arrangements having a point of high multiplicity. In Section 4 we show
how to relate the number dZ and the generic splitting of the sheaf of logarithmic derivations
of AZ . In Section 5 we outline the relation of our method with the technique of deletion
of one line from an arrangement, with a focus on freeness. In Section 6 we develop the
above mentioned refinement for real arrangements and we prove Terao’s conjecture when
the lowest exponent is at most 5.

Notation. We denote the Chern classes of a coherent sheaf E on Pn as integers: the ith

Chern class will be a multiple H i, where H is the hyperplane class. We denote by IX/Y
the ideal sheaf of a subscheme X of a scheme Y , and we suppress the notation /Y when
it is clear from the context). We write ωX for the dualizing sheaf of a closed subscheme
X of Pn. The residue field at a point x ∈ X will be denoted by kx.

Given a finite set of points Z in a projective space, we say that a line L is a h-secant
line to Z if |L ∩ Z| ≥ h. We add the adjective strict if we require equality.

1. Duality and logarithmic vector fields

Let k be a field. Consider Pn = Pnk, and let Z = {z1, . . . , zm} be a finite collection

of points in the dual space P̌n. Each point y ∈ P̌n corresponds to a hyperplane Hy in

Pn (and likewise we associate with x ∈ Pn a hyperplane of P̌n, denoted by Lx). So,
with Z is associated the hyperplane arrangement AZ = (Hz1 , . . . ,Hzm). The hyperplane
arrangement divisor DAZ

is defined as DAZ
= ∪mi=1Hzi . Let fi be a linear form defining

Hzi and f = Πm
i=1fi be an equation of DAZ

.
Saito’s sheaf of logarithmic vector fields TPn(− logDAZ

) (see [Sai80]) is the sheafification
of the module of logarithmic derivations associated with the divisor DAZ

, mod out by the
Euler derivation. We will often abbreviate TZ = TPn(− logDAZ

).
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Our first result shows how to obtain TZ from the ideal sheaf IZ of Z in P̌n. Consider
the flag variety:

F = {(x, y) ∈ Pn × P̌n |x ∈ Hy},
and the projections p and q of F onto Pn and P̌n. It is well-known that F ' P(TPn(−1)).

Theorem 1. There is a natural isomorphism of sheaves of OPn-modules:

TZ ' p∗(q∗(IZ(1))).

Proof. This is somehow implicit in [FMV13,FV12]), but we give here a simplified proof.
First of all, let H be a hyperplane in Pn. We have TPn(−1)|H ' TH(−1) ⊕ OH . So,

HomH(TPn(−1),OH) ' k since HomH(TH(−1),OH) = 0. Therefore, there is a non-zero
map TPn(−1) → OH unique up to a non-zero scalar, and for any choice of this scalar we
have an exact sequence:

0→ TPn(− logH)→ TPn(−1)→ OH → 0.

One easily sees by the Euler sequence that:

(1) TPn(− logH) ' OnPn .

Letting H vary in A = AZ , we get a map α : TPn(−1)→
⊕

H∈AOH , uniquely determined
by the choice of one non-zero scalar αH for each H ∈ A. For any choice of these scalars, we
get the same kernel. Indeed, given α = (αH)H∈A and α′ = (α′H)H∈A, the automorphism

of
⊕

H∈AOH defined by (
α′H
αH

)H∈A induces an isomorphism of ker(α) onto ker(α′). We

have thus an exact sequence:

0→
⋂
H∈A
TPn(− logH)→ TPn(−1)→

⊕
H∈A
OH

Now, taking the quotient by the Euler derivation and sheafifying, [OT92, Proposition 4.8]
implies: ⋂

H∈A
TPn(− logH) ' TPn(− logDA).

Let us now look at the dual side. Consider the natural exact sequence:

(2) 0→ IZ(1)→ OP̌n(1)→ OZ(1)→ 0.

We apply p∗ ◦ q∗ to this sequence, and we note that, since F = P(TPn(−1)), by [Har77,
Chapter III, Exercise 8.4] we get p∗(q

∗(OP̌n(1))) ' TPn(−1). Then, we get a long exact
sequence:

(3) 0→ p∗(q
∗(IZ(1)))→ TPn(−1)→ p∗(q

∗(OZ(1))),

Observe that, for any t ∈ Z, there is a natural isomorphisms:

(4) p∗(q
∗(OZ(t))) '

⊕
z∈Z
OHz .

To see this, first recall that OZ ' OZ(t) for all t since Z has finite length. Further,
p∗(q

∗(OZ(t))) can be seen simply as p∗(Oq−1(Z)) and since q−1(Z) is the disjoint union of
the {Hz | z ∈ Z}, and clearly p∗(OHz) ' OHz , we get the desired isomorphism.

Then, (3) gives a map γ : TPn(−1) →
⊕

z∈Z OHz , which is defined by the choice of
one constant γz for each z ∈ Z. We claim that none of these constants is zero. Indeed,
restricting to one z ∈ Z, the sequence (2) becomes:

0→ Iz(1)→ OP̌n(1)→ Oz(1)→ 0.
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so the sequence (3) for one z ∈ Z is:

0→ p∗(q
∗(Iz(1)))→ TPn(−1)→ OHz → 0.

Indeed, if the rightmost map was zero, then we would have p∗(q
∗(Iz(1))) ' TPn(−1),

and this would give H0(P̌n, Iz(1)) ' H0(Pn, p∗(q∗(Iz(1)))) ' H0(Pn, TPn(−1)) (see [Har77,
Chapter II, Section 5]), while we know that these spaces have different dimensions (n and
n+ 1). So the constant γz is non-zero hence ker(α) ' ker(γ). Summing up, we get:

TZ = TPn(− logDA) ' ker(α) ' ker(γ) ' p∗(q∗(Iz(1))).

This finishes the proof. �

2. Multiplicities, Chern classes, and higher direct images

From now on, we work on the projective plane P2 = P2
k. Given a point x ∈ P2, we write

〈xi〉 for the (i − 1)th infinitesimal neighborhood of x in P2. This is the subscheme cut in

P2 by the ith power of the ideal defining x. It has length
(
i+1

2

)
and c2 = −

(
i+1

2

)
.

Theorem 2. Let m ≥ 1 and d ≥ 0 be integers, and Z ⊂ P̌2 be a set of m distinct points.
Then the sheaf p∗(q

∗(IZ(d))) is a vector bundle of rank d+ 1 with c1 =
(
d+1

2

)
−m on P2,

and we have:

(5) R1p∗(q
∗(IZ(d))) '

⊕
|Lx∩Z|=i+d+1

ω〈xi〉.

Proof. We prove first the last assertion, concerning the first higher direct image.
First of all, we carry out some basic facts on the dualizing sheaf of infinitesimal neigh-

borhoods. Let x ∈ P2. The dualizing sheaf ω〈xi〉 is defined as Ext2P2(O〈xi〉,OP2(−3)) and

is isomorphic to Ext1P2(Iix,OP2(−3)), see [Har77, Chapter III, section 7]). Since this sheaf
is of finite length, it does not change under twisting by OP2(t). We have the resolution of
Ix(1):

0→ OP2 → TP2(−1)→ Ix(1)→ 0.

Taking the ith symmetric power of the map TP2(−1)→ Ix(1), we get:

0→ Symi−1(TP2(−1))→ Symi(TP2(−1))→ Iix(i)→ 0.

Dualizing this sequence we get:

(6) 0→ OP2(−i)→ Symi(ΩP2(1))→ Symi−1(ΩP2(1))→ ω〈xi〉 → 0.

Next, we note that the sheaf q∗(IZ(d)) is flat with respect to the map p over P2. To
check this, let x ∈ P2 and observe that the fibre of p over x is Lx. Denote by {y1, . . . , yh}
the points of Lx ∩ Z. Then, we have:

(7) q∗(IZ(d))|Lx ' OLx(d− h)⊕
⊕

i=1,...,h

Oyi .

Then, the Hilbert polynomial in the variable t of q∗(IZ(d))|Lx is t+ d+ 1. This does not
depend on x, so q∗(IZ(d)) is flat over P2 by [Har77, Chapter III, Theorem 9.9].

Now, we claim that R1p∗(q
∗(IZ(d))) is supported at the points x ∈ P2 such that

|Z ∩ Lx| ≥ d+ 2. To see this, let again h = |Z ∩ Lx| and note that R2p∗(q
∗(IZ(d))) = 0,

because the relative dimension of p is 1. Then, since q∗(IZ(d)) is flat over P2, by base
change (see [Har77, Chapter III, Theorem 12.11]) we have:

R1p∗(q
∗(IZ(d)))⊗kx ' H1(Lx, IZ∩Lx(d)) ' H1(Lx,OLx(d− h)),
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and this is non-zero if and only if h ≥ d+ 2.
We have thus proved that R1p∗(q

∗(IZ(d))) is supported at a subscheme of finite length
of P2. We now look at each point x in its support, to check the local structure. To this
purpose, we can assume that Z consists of h ≥ d+ 2 points lying in the line Lx. We have
then the exact sequence:

0→ OP̌2(d− 1)→ IZ(d)→ OLx(d− h)→ 0.

Since R1p∗(q
∗(OP̌2(d− 1))) = 0 (see [Har77, Chapter III, Exercise 8.4]), we have:

R1p∗(q
∗(IZ(d))) ' R1p∗(q

∗(OLx(d− h))).

To compute the right-hand-side, we use the exact sequence:

0→ OP̌2(d− h− 1)→ OP̌2(d− h)→ OLx(d− h)→ 0.

Since F = P(TP2(−1)), again [Har77, Chapter III, Exercise 8.4] says that, applying p∗ ◦ q∗
to this exact sequence, we obtain (6) for i = h− d− 1. This proves

(8) R1p∗(q
∗(OLx(d− h))) ' ω〈xh−d−1〉.

Letting x vary in the support of R1p∗(q
∗(IZ(d))), we finally get formula (5).

Let us now prove the statements regarding the direct image. The incidence variety F is
a divisor of bi-degree (1, 1) in P2 × P̌2, i.e., we have an exact sequence:

0→ OP2×P̌2(−1,−1)→ OP2×P̌2 → OF → 0.

Denote by pri the projections onto the two factors of P2×P̌2. Tensoring the above sequence
by pr∗2(IZ(d)) we get:

0→ pr∗1(OP2(−1))⊗ pr∗2(IZ(d− 1))→ pr∗2(IZ(d))→ q∗(IZ(d))→ 0.

Taking direct image by pr1, we get a long exact sequence:

0→H0(P̌2, IZ(d− 1))⊗OP2(−1)→ H0(P̌2, IZ(d))⊗OP2 → p∗(q
∗(IZ(d)))→(9)

→H1(P̌2, IZ(d− 1))⊗OP2(−1)→ H1(P̌2, IZ(d))⊗OP2 → R1p∗(q
∗(IZ(d)))→ 0.

We also have H2(P̌2, IZ(t)) = 0 for all t ≥ −1. Since R1p∗(q
∗(IZ(d))) is supported on a

scheme of finite length, it does not contribute to the computation of c1. We get:

c1(p∗(q
∗(IZ(d)))) = χ(IZ(d− 1)) = χ(OP̌2(d− 1))− χ(OZ) =

(
d+ 1

2

)
−m.

The same argument gives that the rank of p∗(q
∗(IZ(d)). Finally, the sheaf p∗(q

∗(IZ(d))
is locally free by [Har77, Chapter III, Corollary 12.9], since H0(Lx, IZ(d)|Lx) is constant
on x in view of (7). �

Given an arrangement A of m lines in P2, according to the previous theorem and to
Theorem 1, we have c1(TP2(− logDA)) = 1 −m, while c2(TP2(− logDA)) depends on the
number bA,h of points of multiplicity h ≥ 3 of DA (we will also call them the points of

multiplicity h “of A”), according to the following lemma. Note that c2(ω〈xi〉) = −
(
i+1

2

)
.

Lemma 2.1. We have the relations:∑
j≥2

(
j
2

)
bA,j =

(
m
2

)
,(10) ∑

j≥2

(
j
2

)
bA,j+1 =

(
m−1

2

)
− c2(TPn(− logDA)).(11)
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Proof. Let Z be the set of points in P̌2 corresponding to A so that A = AZ and TZ =
TPn(− logDA). First note that, for any h, bA,h is the number of strict h-secant lines to Z,
i.e. the number of points x ∈ P2 such that |Lx ∩ Z| = h. We get:∑

j≥2

(
j
2

)
bA,j = −c2(R1p∗(q

∗(IZ))),∑
j≥2

(
j
2

)
bA,j+1 = −c2(R1p∗(q

∗(IZ(1)))).

Both formulas are obtained by the previous theorem. Setting d = 0 in the exact sequence
(9), we get:

0→ OP2(−m)→ OP2(−1)m → OmP2 → R1p∗(q
∗(IZ))→ 0.

Computing c2, we get formula (10). Setting d = 1 in the exact sequence (9) and computing
Chern classes, we get formula (11). �

3. Line arrangements with a point of high multiplicity

Here we study freeness of line arrangements in P2 that admit a point having high
multiplicity with respect to the exponents. Recall that a line arrangement A is free with
exponents (a, b) if TP2(− logDA) ' OP2(−a) ⊕ OP2(−b). Of course, this implies that
c2(TP2(− logDA)) = ab.

Theorem 3. Let k ≥ 1, r ≥ 0 be integers, set m = 2k + r + 1, and consider a line
arrangement A of m lines with a point of multiplicity h with k ≤ h ≤ k + r + 1. Then A
is free with exponents (k, k + r) if and only if c2(TP2(− logDA)) = k(k + r).

Remark 3.1. In the above setting, it turns out that if h ≥ k + r + 2, then A cannot be
free with exponents (k, k + r), see the last statement of Corollary 4.3.

To prove the theorem, we will need the following lemma.

Lemma 3.2. Let E be a rank-2 vector bundle on P2 and assume c1(E) = −r for some
r ≥ 0 and c2(E) = 0. Then, the following are equivalent:

i) the bundle E splits as OP2 ⊕OP2(−r),
ii) we have H0(P2, E(−1)) = 0,

iii) there is a line H of P2 such that E|H ' OH ⊕OH(−r).
For any line H of P2 we have E|H ' OH(s)⊕OH(−r − s), for some integer s ≥ 0.

Proof. Condition (i) clearly implies (ii). The equivalence of (i) and (iii) is proved in [EF80].
So it only remains to show that (ii) implies (i), which we will now do.

Let t be the smallest integer such that H0(P2, E(t)) 6= 0. By (ii) we know t ≥ 0. Also,
it is well-known (cf. [Bar77, Lemmas 1 and 2]) that any non-zero global section s of E(t)
vanishes along a subscheme W of P2 of codimension ≥ 2 and of length:

(12) c2(E(t)) = t(t− r) ≥ 0.

We have an exact sequence:

0→ OP2
s−→ E(t)→ IW (2t− r)→ 0.

So t = 0 would imply X = ∅ hence IW (2t− r) ' OP2(−r) and E splits as OP2 ⊕OP2(−r)
since Ext1

P2(OP2(−r),OP2) = 0.

Then, it remains to rule out the case t > 0. Hence, we assume t > 0 i.e. H0(P2, E) = 0,
and we look for a contradiction. By Riemann-Roch, the Euler characteristic χ(E) is
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positive, hence H2(P2, E) 6= 0, so H0(P2, E(r−3)) 6= 0 by Serre duality, indeed E∗ ' E(r).
Therefore t > 0 implies t ≤ r − 3. But by (12), t > 0 implies t ≥ r, a contradiction.

Let us now prove the last statement. Given a line H of P2, we have E|H ' OH(s) ⊕
OH(−r − s) for some integer s, and we have to check that s is non-negative. Let us
assume s < 0, and show that this leads to a contradiction. First, note that we may
assume s > −r, for otherwise posing s′ = −r − s we have s′ ≥ 0 and we still have
E|H ' OH(s′)⊕OH(−r − s′).

Now, in case −r < s < 0, we have an unstable section, namely H0(P2, E(−1)) 6= 0
since E does not decompose as OP2⊕OP2(−r) (by the part we have already proved of this
lemma). For all integers t, the exact sequence of restriction of E(t) to H reads:

0→ E(t− 1)→ E(t)→ OH(t+ s)⊕OH(t− r − s)→ 0.

So −r < s < 0 implies H0(P2, E(t− 1)) ' H0(P2, E(t)) for all t ≤ 0, and this space is zero
for t� 0. But this contradicts H0(P2, E(−1)) 6= 0. �

We will now prove our theorem.

Proof of Theorem 3. One direction if obvious. What we have to prove is that the condition
on Chern classes is sufficient, so we assume c2(TP2(− logDA)) = k(k + r). Let Z be the
set of m points of P̌2 corresponding to A, so that A = AZ and TP2(− logDA) = TZ .

Since A has a point x0 of multiplicity h ≥ k, on the dual side there is a line L = Lx0 ⊂ P̌2

that contains h points of Z (i.e. L is a strict h-secant to Z), and leaves out the remaining
m− h points of Z. Set Z ′ = Z \ L. Let g = 0 be an equation of L in P̌2.

Restricting the ideal sheaf IZ to L we get the ideal sheaf of h points in P1, i.e. OL(−h).
This gives an exact sequence:

(13) 0→ IZ′
g−→ IZ(1)→ OL(1− h)→ 0.

We apply p∗ ◦ q∗ to this exact sequence. By Theorem 2 we have p∗(q
∗(OL(1 − h))) '

OP2(1− h) and, setting d = 1 in (8), we get R1p∗(q
∗(OL(1− h))) ' ω〈xh−2

0 〉.

Therefore p∗ ◦ q∗ of (13) gives:

0→OP2(h−m)→ TZ
δ−→ OP2(1− h)→(14)

→R1p∗(q
∗(IZ′))→ R1p∗(q

∗(IZ(1)))→ ω〈xh−2
0 〉 → 0.

We know that R1p∗(q
∗(IZ′)) is supported at points x such that |Lx ∩Z ′| ≥ 2. The image

of the map δ above is then a sub-sheaf of OP2(1−h), whose first Chern class is 1−h since
all the sheaves in the second row of (14) are supported in codimension ≥ 2. This means
that Im(δ) ' IΓ(1− h), for some finite length subscheme Γ ⊂ P2, and we have:

(15) 0→ OP2(h−m)→ TZ → IΓ(1− h)→ 0.

Looking at (14), we see that the subscheme Γ parametrizes (non-strict) bisecant lines to
Z ′ that meet L away from Z.

We apply now Lemma 3.2. If, by contradiction, the bundle TZ ⊗ OP2(k) did not split
as OP2 ⊕OP2(−r), then we would have an unstable section, namely:

H0(P2, TZ ⊗OP2(k − 1)) 6= 0.

Note that the assumption h ≤ k + r + 1 = m− k gives h+ k −m− 1 < 0, so we have
the vanishing H0(P2,OP2(h + k −m − 1)) = 0. So, from (15), twisted by OP2(k − 1), we
deduce:

H0(P2, IΓ(k − h)) 6= 0,
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hence clearly k ≥ h, which implies h = k so H0(P2, IΓ) 6= 0. This says that Γ is empty.
But computing Chern classes via Theorem 2 in (15) twisted by OP2(k− 1) (and still with
h = k) shows that Γ has length c2(IΓ) = r + 1, a contradiction. �

As an example of application of this description of TZ as direct image, let us mention
the following well-known result.

Proposition 3.3. Let A be an arrangement of m lines, k ≥ 0 be an integer, x be a point
of multiplicity k + 1 of DA. Set A′ = A \ {H ∈ A | x ∈ H}. Then the following are
equivalent:

i) the arrangement A is free with exponents (k,m− k − 1);
ii) any point of multiplicity h ≥ 2 in DA′ has multiplicity h+ 1 in DA.

Proof. Again, we let Z be the set of m points of P̌2 corresponding to A, so that A = AZ
and TP2(− logDA) = TZ . Since A has a point x of multiplicity k + 1, on the dual side
there is a line L = Lx ⊂ P̌2 that contains k + 1 points of Z (i.e. L is a strict k + 1-secant
to Z), and leaves out the remaining m − k − 1 points of Z. Set Z ′ = Z \ L. We have
A′ = AZ′ . We can then rewrite (15) as:

0→OP2(k −m+ 1)→ TZ → IΓ(−k)→ 0,(16)

where, as above, Γ parametrizes bisecant lines to Z that meet L away from Z. Now, (ii)
is equivalent to the fact that there is no such bisecant, i.e. to the fact that Γ is empty, so
that (16) becomes:

0→ OP2(k −m+ 1)→ TZ → OP2(−k)→ 0.

This is clearly equivalent to (i). �

•

•

• •

•

•

•

•

•
x1

x2

x3

Figure 1. Hesse arrangement

Example 3.4. Theorem 3 gives a quick way to show that an arrangement A having
the combinatorial type of the Hesse arrangement of the 12 lines passing through the 9
inflection points of a smooth complex plane cubic C is free with exponents (4, 7). The
pencil of cubics given by C and the Hessian of C contains 4 cubics which are unions of 3
lines, and A is the union of these 12 lines. In this case, any line through two inflection
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points passes through a third. In the picture below, the 9 points are displayed, together
with the 12 lines; the circles should be though of as continuation of the diagonal lines not
passing through the center, for instance x1, x2, x3 are aligned.

In particular c2(TP2(− logDA)) = 55 − 27 = 28 so the existence of quadruple points
implies that A is free with exponents (4, 7).

4. Blow up of the dual plane and restriction to lines

Given a line arrangement AZ corresponding to a set of m points Z in P̌n, and given
a line Hy corresponding to a point y ∈ P̌2 \ Z, we study here the restricted logarithmic

bundle (TZ)|Hy in terms of the curves in the dual P̌2 containing Z and singular at y. To
do this, we outline an application to our situation of the so-called standard construction,
see [OSS80, Chapter I, Section 3.1]. We consider the blow-up P̃ of P̌2 at a point y ∈ P̌2 \Z.

We denote by p̃ and q̃ the induced projections from P̃ to Hy and to P̌2. Note that p̃ is a P1-
bundle over Hy (in particular p̃ is flat). We consider the sheaf p̃∗(q̃

∗(IZ(1))) defined over
the projective line Hy. This is a vector bundle of rank 2 on Hy, and as such decomposes
as a direct sum of lines bundles. We will compare this bundle to (TZ)|Hy . Note that TZ
restricts to Hy as a direct sum of line bundles, so we write:

(17) (TZ)|Hy ' OHy(−ay)⊕OHy(−by),

for some integers ay ≤ by with ay + by = m− 1.

Definition 4.1. Let y ∈ P̌2 and let Z be a finite set of points of P̌2. We define dZ,y as the

smallest positive integer d such that there is a curve in P̌2 of degree d+ 1 passing through
Z and having multiplicity d at y. Equivalently, dZ,y is the smallest integer d such that:

H0(P̌2, Idy ⊗IZ(d+ 1)) 6= 0.

We define dZ as maxy∈P̌2 dZ,y.

We also define tZ,y as the number of lines in P̌2 through y that are trisecant to Z. In
other words, thinking of the dual side, we put:

tZ,y =
∑

x∈Hy∩SZ

(mult(DAZ
, x)− 2),

where SZ is the singular locus of DAZ
and mult(DAZ

, x) is the multiplicity of x as point
of AZ , i.e., the number of lines of AZ through x.

Theorem 4. Let Z be a finite set of points of P̌2 and y ∈ P̌2 \ Z. Then we have:

dZ,y ≤ ay ≤ dZ,y + tZ,y.

In particular, if y lies on no trisecant line to Z, we get ay = dZ,y.
Moreover we have the inequality dZ,y ≤ m− 1− dZ,y − tZ,y and an isomorphism:

p̃∗(q̃
∗(IZ(1))) ' OHy(−dZ,y)⊕OHy(dZ,y + tZ,y + 1−m).

Proof. The sheaf p̃∗(q̃
∗(IZ(1))) si a vector bundle of rank 2 on Hy, hence p̃∗(q̃

∗(IZ(1))) '
OHy(−d) ⊕ OHy(−e), for some d ≤ e. Our first task will be to prove d = dZ,y. The
decomposition p̃∗(q̃

∗(IZ(1))) ' OHy(−d) ⊕ OHy(−e) gives an injective map OHy(−d) →
p̃∗(q̃

∗(IZ(1))). Pulling back to P̃, since p̃ is flat and p̃∗(OHy) ' OP̃, we get an injection:

OP̃ ↪→ q̃∗(IZ(1))⊗ p̃∗(OHy(d)).
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We now push down to P̌2. Since P̃ is the blow-up of y, i.e. the projectivization of Iy(1),

and P̃ maps to Hy via the linear system |Iy(1)| of lines through y, we get for all t ≥ 0 an
isomorphism q̃∗(p̃

∗(OHy(t))) ' Ity(t). Then applying p̃∗ to the previous display and using
the projection formula (see [Har77, Chapter II, Exercise 5.1]) we get a map:

OP̌2 ↪→ IZ(1)⊗ q̃∗(p̃∗(OHy(d))) ' IZ(1)⊗Idy (d).

Recall that dZ,y is the smallest integer t such that H0(P̌2, IZ(1)⊗Ity(t)) 6= 0. Then, we
get dZ,y ≤ d.

Now, we prove dZ,y ≥ d. We have to check H0(P̌2, Id−1
y ⊗IZ(d)) = 0. Assume by

contradiction that this space contains a non-zero element. This would give a section
OP̌2 ↪→ IZ(d) that vanishes with multiplicity d − 1 at y. Pull this map back to P̃. The
resulting section vanishes with multiplicity d−1 along the exceptional divisor E = q̃−1(y).
In other words we have a map OP̃2 ↪→ OP̃((d − 1)E)⊗ q̃∗(IZ(d)). Note that E lies in the
linear system |q∗(OP̌2(1))⊗ p̃∗(OHy(−1))|. We can thus clear d − 1 times the divisor E
from our section to get a map:

OP̃ ↪→ q̃∗(IZ(1))⊗ p̃∗(OHy(d− 1)).

Hence, by pushing forward to Hy via p̃ and using projection formula, we get:

OHy(1− d) ↪→ p̃∗(q̃
∗(IZ(1))).

This is incompatible with p̃∗(q̃
∗(IZ(1))) ' OHy(−d)⊕OHy(−e) with d ≤ e. We have thus

proved d = dZ,y.

We wish now to show the inequalities dZ,y ≤ ay ≤ dZ,y+tZ,y. To do this, we compare the
vector bundles (TZ)|Hy ' OHy(−ay)⊕OHy(−by) and p̃∗(q̃

∗(IZ(1))) over Hy, by exhibiting

an exact sequence where they both appear. Recall that P̃ = p−1(Hy), where p is the
projection map from the flag F to P2. Therefore we have an exact sequence:

0→ p∗(OP2(−1))→ OF → OP̃ → 0,

with OP̃ ' p
∗(OHy).

Tensoring the above exact sequence by q∗(IZ(1)), since y 6∈ Z and q̃ is flat away from
y, we get an exact sequence:

0→ p∗(OP2(−1))⊗ q∗(IZ(1))→ q∗(IZ(1))→ q̃∗(IZ(1))→ 0.

Taking direct image by p we get the long exact sequence:

0→TZ(−1)
f−→ TZ → p̃∗(q̃

∗(IZ(1)))→(18)

→R1p∗(q
∗(IZ(1)))⊗OP2(−1)

f−→ R1p∗(q
∗(IZ(1)))→ R1p̃∗(q̃

∗(IZ(1)))→ 0,(19)

where here f is an equation of Hy in P2.

Let us note that R1p̃∗(q̃
∗(IZ(1))) is supported at trisecant lines to Z through y. Indeed,

by the same reason as in Theorem 2, the sheaf q̃∗(IZ(1)) is flat over P2 with respect to
the map p̃, so by base change over x ∈ Hy, we have:

R1p̃∗(q̃
∗(IZ(1)))⊗kx ' H1(Lx, IZ∩Lx(1)),

and this space vanishes if and only if |Z ∩ Lx| ≤ 2.
Now we want to show that R1p̃∗(q̃

∗(IZ(1))) has length tZ,y. From (19), we see that

R1p̃∗(q̃
∗(IZ(1))) is the restriction of R1p∗(q

∗(IZ(1))) to Hy. Next, we show that for any

point x ∈ Hy and any i ≥ 1, we have ω〈xi〉⊗OHy ' kix. To do this, we write a slightly
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easier resolution of ω〈xi〉 than (6). Assume that the point x is defined by the vanishing of

the linear forms f, g (recall that f defines Hy). Then we have:

0→ OP2(−i− 1)→ OP2(−1)i+1 (gδk,j+fδk+1,j)k,j−−−−−−−−−−−→ OiP2 → ω〈xi〉 → 0.

Restricting the above sequence to the line Hy (i.e., setting f = 0), we extract a resolution:

0→ OHy(−1)i
(gδk,j)k,j−−−−−−→ OiHy

→ ω〈xi〉⊗OHy → 0.

We get ω〈xi〉⊗OHy ' kix. Varying x among the points such that |Lx ∩ Z| ≥ 3, and using

the isomorphism (5) of Theorem 2, we get that R1p̃∗(q̃
∗(IZ(1))) has length tZ,y.

Let τZ,y be the kernel of the map f among the higher direct image sheaves appearing

in the sequence (19). We observe that τZ,y has the same length as R1p̃∗(q̃
∗(IZ(1))), i.e.

tZ,y. The sequence (18) becomes a diagram:

0 TZ(−1) TZ p̃∗(q̃
∗(IZ(1))) τZ,y 0

00

(TZ)|Hy

f

The desired exact sequence is thus:

(20) 0→ OHy(−ay)⊕OHy(−by)→ OHy(−dZ,y)⊕OHy(−e)→ τZ,y → 0.

Twisting by OHy(ay) we see that H0(Hy,OHy(ay − dZ,y)) 6= 0 so dZ,y ≤ ay. On the other

hand if we twist the above sequence by OHy(by − 1), we get no H1 in the leftmost term
(because ay ≤ by) nor in the rightmost one (because τZ,y has finite length), hence neither
in the middle one. So by − e ≥ 0. Since tZ,y = ay − dZ,y + by − e, we get ay ≥ tZ,y + dZ,y.
This proves the desired inequalities. Note that, if tZ,y = 0, then τZ,y = 0 and we have:

p̃∗(q̃
∗(IZ(1))) ' (TZ)|Hy .

Finally, by the sequence (20), since we have proved that τZ,y has length tZ,y, we get:

c1(p̃∗(q̃
∗(IZ(1))))− c1((TZ)|Hy) = tZ,y.

Then, e = m− 1− dZ,y − tZ,y. The proof is now finished. �

Corollary 4.2. Let Z be a finite set of m ≥ 1 points of P̌2.

i) The following conditions are equivalent:
(a) Z is contained in a line;
(b) there is y ∈ P̌2 \ Z such that dZ,y = 0;
(c) dZ = 0;
(d) the arrangement AZ is free with exponents (0,m− 1).

ii) Assume m ≥ 5. Then the following conditions are equivalent.
(a) there is a line containing all but one points of Z;
(b) dZ = 1;
(c) the arrangement AZ is free with exponents (1,m− 2).
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Proof. Let us look at (i). Given a point y ∈ P̌2 \ Z, by definition we have dZ,y = 0 if and

only H0(P̌2, IZ(1)) 6= 0 since I0
y ' OP̌2 , i.e., if and only if Z is contained in a line. This

condition does not depend on y, so dZ,y = dZ . So the first three conditions are clearly
equivalent.

Le us check the equivalence with the fourth condition. Note that, by the isomorphism
(1), the equivalence of (id) and (ia) is clear for m = 1. So we assume m ≥ 2, hence
h0(P̌2, IZ(1)) ≤ 1. Assume that Z is contained in a line, and write down (9) for d = 1.
Note that the cokernel of the map H0(P̌2, IZ(1))⊗OP2 → TZ induced by (9) is a torsion-
free sheaf of rank 1 and c1 = 1−m hence isomorphic to IΓ(1−m) where Γ is a subscheme
of P2 of length c2(TZ). By Lemma 2.1 we easily get that c2(TZ) = 0, so Γ is actually
empty, and we get (id).

Conversely, if we have (id) then we have H0(P2, TZ) 6= 0. By (9) a global section of
TZ factorizes through H0(P̌2, IZ(1))⊗OP2 because there is no non-zero global section of
H1(P̌2, IZ)⊗OP2(−1). Then we have (ia).

Let us now turn to (ii). We check first that (iib) implies (iia). If dZ = 1, then for a
general point y ∈ P̌2 we have H0(P̌2, IZ∪y(2)) 6= 0. Hence Z is contained in at least two
distinct conics C1 and C2 (once given C1, choose C2 through Z and x 6∈ C1). Since m ≥ 5,
C1 and C2 have a common component, say L. Let C1 = L ∪ L1 and C2 = L ∪ L2 with
L1 6= L2. Moreover, the point L1 ∩ L2 lies in Z \ L, for otherwise we would have Z ⊂ L
so dZ = 0, a contradiction.

Of course we have (iic) ⇒ (iib), so it only remains to see that (iia) implies (iic). Let
z ∈ Z be the point not aligned with the other points of Z. Through z, there is a strict
2-secant line L to Z. Set Z ′ = Z \ L. Setting A = AZ and A′ = AZ′ in Proposition 3.3,
we get the result. �

Putting together the previous theorem and Lemma 3.2, we get the following result,
somehow related to Yoshinaga’s theorem, cf. [Yos04].

Corollary 4.3. Let k ≥ 1, r ≥ 0 be integers, set m = 2k + r + 1, and consider a line
arrangement AZ associated with m points Z in P̌2 having c2(TZ) = k(k + r). Then the
following are equivalent:

i) the arrangement AZ is free with exponents (k, k + r);
ii) there is a line H = Hy in P2 such that (TZ)|Hy ' OHy(−k)⊕OHy(−k − r);

iii) there is a point y ∈ P̌2 \ Z lying in no trisecant line to Z, such that dZ,y = k;
iv) dZ = k.

In particular, if Z has a h-secant line with h ≥ k + r + 2, then AZ cannot be free.

Proof. First of all, we check that dZ is attained at a general point of P̌2. So let y0 be a
point with dZ,y0 = dZ and let us show that there is a Zariski open neighborhood U of
y0 such that dZ,y = dZ for all y ∈ U . Note that for any given integer d, the function

fd : y 7→ dimk H0(P̌2, Idy ⊗IZ(d+ 1)) is upper semicontinuous. Further, fdZ−1(y0) = 0. So
there is a Zariski open neighborhood U of y0 such that, for all y ∈ U , we have fdZ−1(y) = 0.
Then dZ,y ≥ dZ for all y ∈ U . On the other hand, of course dZ,y ≤ dZ , so we have equality.

Let us now look at the equivalence of our statements. Clearly, (i) implies (ii). We write
(TZ)|Hy ' OHy(−ay) ⊕ OHy(−by) with ay ≤ by. By Theorem 4, (ii) implies (iii) since
ay = dZ,y as soon as y lies in no trisecant to Z. Moreover, (iii) ⇒ (i). Indeed, by (iii), we
have ay = k again because y lies in no trisecant to Z. Then, by Lemma 3.2 we get (i). We
have shown the equivalence of the first three conditions.
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Moreover, (iv) obviously implies (iii). Finally, (i) implies (iv) since by (i) we have ay = k

for all y ∈ P̌2, so for a general point of y ∈ P̌2 we get dZ,y = k, hence dZ = k.
For the last statement we argue as follows. First, since c2(TZ) = k(k + r), the ar-

rangement AZ cannot be free with other exponents than (k, k+ r). We now check that it
cannot be free with these exponents either. Suppose that Z has a strict h-secant line L
with h ≥ k+ r+ 2 and take a general point y in P̌2. Then we have a curve in P̌2 of degree
m− h+ 1 ≤ k through Z and having multiplicity m− h at y, namely the union of L and
of the m− h lines joining y with the m− h points of Z \L. Therefore dZ,y ≤ k− 1 so AZ
is not free by the previous statements of this corollary. �

The way to use it will frequently be by contradiction in the follwing sense. Let AZ
be an arrangement with c2(TZ) = k(k + r). Then we have equivalence of the following
conditions.

• AZ is not free;
• for any line H ⊂ P2, there is t > 0 such that (TZ)|H ' OH(t−k)⊕OH(−k−r− t);
• there is t > 0 such that H0(P2, TZ(k − t)) 6= 0.

In particular, if AZ is not free, taking t maximal such that H0(P2, TZ(k − t)) 6= 0, and
choosing a non-zero element of H0(P2, TZ(k − t)) we get an exact sequence:

(21) 0→ OP2(t− k)→ TZ → IW (−k − r − t)→ 0,

where W ⊂ P2 is a subscheme of finite length. In fact, a computation of c2 shows that the
length of W is t(t+ r). We will sometimes call a non-zero element of H0(P2, TZ(k− t)) an
unstable section. Also we point out that, for any line H meeting W , we have :

(22) H0(H, TZ(k − t− 1)|H) 6= 0.

Example 4.4 (Dual Hesse configuration). Let k = C, and let Z ⊂ P̌2 consist of 9 points
such that any bisecant line is a strict trisecant. Then AZ is free with exponents (4, 4).

Indeed, first note that by (10) of Lemma 2.1 we get bAZ ,3 = 12 and by (11) we obtain
c2(TZ) = 16. We choose two triangles T = L1L2L3 and T ′ = L′1L

′
2L
′
3 containing Z with

Li 6= L′j for all i, j so that Z = T ∩ T ′, and any cubic containing Z belongs to the pencil

generated by T and T ′. By Bertini’s theorem, the general element of this pencil is smooth
away from Z.

Now, if AZ is not free, then by the above discussion we have an unstable section
H0(P2, TZ(4 − t)) with t > 0, hence a sequence of the form (21), with W 6= ∅. Assume
t = 1 (for higher t the argument is similar). Choosing one point w of W , in view of (22)
we get for any point y of Lw, the bound ay ≤ 2, in the notation of (17). Hence dZ,y ≤ 2
by Theorem 4. In other words, for any such y there is a cubic containing Z, singular at y.
This contradicts the fact that a general cubic through Z is smooth away from Z.

The dual Hesse arrangement is given by the 9 lines corresponding to the inflection
points of a smooth cubic curve C in P̌2. Its combinatorial type is the one described above.
Indeed, in the Hesse pencil of C and its Hessian there are 4 triangles, which are precisely
the 12 strict trisecant lines to the 9 inflection points. The 9 points appear in Figure 3.

5. Sub-arrangement obtained by deletion

A classical and useful technique in the theory of arrangements consists in considering
arrangements obtained from an arrangement A by adding a hyperplane out of A, or
deleting one of A, or restricting A to a hyperplane of A (see [OT92] for a comprehensive
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treatment). Here we provide a different approach to this technique and outline some
considerations on freeness of line arrangements based on our approach. Most of the results
contained in this section are certainly known to experts, and can be proved with the
classical techniques of deletion.

5.1. Deletion of a point and triple points along a line. Let Z be a finite set of
points in P̌2 and let z ∈ Z. Set Z ′ = Z \ {z}. We say that AZ′ is a sub-arrangement of
AZ , obtained by deletion of z. We have the exact sequence:

0→ IZ → IZ′ → Oz → 0.

Applying p∗ ◦ q∗ to this sequence, we get:

0→ TZ → TZ′
β0−→ OHz

β1−→ R1p∗(q
∗(IZ(1)))

β2−→ R1p∗(q
∗(IZ′(1)))→ 0.

Proposition 5.1. We have a short exact sequence:

(23) 0→ TZ → TZ′ → OHz(−tZ,z)→ 0.

Proof. Given a point x in P2, we denote again by 〈xi〉 the (i − 1)th infinitesimal neigh-
borhood of x in P2. By Theorem 2, the sheaf R1p∗(q

∗(IZ(1))) is the direct sum of the
ω〈xh−2〉, over all points x in the singular locus of DAZ

, where we take h = mult(DAZ
, x).

Therefore, the kernel of the map β2 above describes the difference between triple points of
AZ and triple points of AZ′ each counted with multiplicity. By computing multiplicities,
we get that the length of the support of ker(β2) is precisely tZ,z. Since ker(β2) = Im(β1)
has length tZ,z, we get that ker(β1) = Im(β0) has degree −tZ,z. Summing up, Im(β0) is a
sub-sheaf of OHz of degree −tZ,z so Im(β0) ' OHz(−tZ,z). �

5.2. Some properties of freeness of line arrangements related to deletion. Here
we give some simple relations between freeness of a given arrangements AZ and the num-
bers tZ,z, for z ∈ Z. Throughout the subsection, we let k ≥ 1, r ≥ 0 be integers, we set
m = 2k + r + 1, and we consider a set Z of m points of P2 and the corresponding line
arrangement AZ .

Proposition 5.2. Assume AZ is free with exponents (k, k + r), let z ∈ Z and set Z ′ =
Z \ {z}. Then, one of the following alternatives takes place:

i) tZ,z = k − 1 and AZ′ is free with exponents (k − 1, k + r);
ii) tZ,z = k + r − 1 and AZ′ is free with exponents (k, k + r − 1);

iii) tZ,z ≥ k + r and AZ′ is not free.

Proof. Dualizing the exact sequence (23) (i.e., applying to it the functor HomOP2
(−,OP2))

and using the fact that Ext1OP2
(OHZ

(−t),OP2) ' OHz(t+ 1) for all integer t, we obtain an

exact sequence:

(24) 0→ T ∗Z′ → T ∗Z → OHz(tZ,z + 1)→ 0.

Here (−)∗ denotes the dual of a vector bundle. Since T ∗Z ' OP2(k)⊕OP2(k + r), we have
thus a a surjective map:

OP2(k)⊕OP2(k + r) � OHz(tZ,z + 1).

Then, it is clear that tZ,z ≥ k − 1 for otherwise there could not be an epimorphism as
above. Also, it is clear that in case (i) the kernel bundle of the above map splits in the
desired way, since the map above factors as:

T ∗Z → OP2(k) � OHz(k),
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where the first map is the projection onto the direct summand OP2(k) and the second map
is the canonical surjection. The case (ii) is analogous.

Let us prove now the case (iii). We consider again the exact sequence (24). We twist
it by −tZ,z − 1 and take the long exact sequence of cohomology. Since tZ,z ≥ k+ r we get

H1(P2, T ∗Z′(−tZ,z − 1)) 6= 0 which proves that TZ′ does not decompose as a direct sum of
line bundles. �

In the same spirit, we have the following proposition.

Proposition 5.3. Assume c2(TZ) = k(k + r). Then:

i) for all z ∈ Z, we have tZ,z 6∈]k − 1, k + r − 1[;
ii) if there is z ∈ Z such that tZ,z = k − 1 or tZ,z = k + r − 1, then AZ is free with

exponents (k, k + r);
iii) if there is z ∈ Z such that tZ,z < k − 1, then AZ is not free.

Moreover, if AZ is not free, but has the same combinatorial type of a free arrangement,
then for all z ∈ Z we have tZ,z ≥ k + r.

Proof. Consider again the exact sequence obtained in the proof of the previous proposition
(from which we borrow the notation also):

0→ T ∗Z′ → T ∗Z → OHz(tZ,z + 1)→ 0.

Consider now the restriction to the line Hz of T ∗Z . This splits as OHz(k−s)⊕OHz(k+r+s),
for some integer s ≥ 0 by Lemma 3.2, indeed one computes c2(TZ(−k)) = 0. So we get an
epimorphism:

(25) OHz(k − s)⊕OHz(k + r + s) � OHz(tZ,z + 1).

Now, in case tZ,z = k−1 or tZ,z = k+r−1, this forces s = 0, hence TZ is free by Corollary
4.3. This gives (ii). By the same corollary, since tZ,z < k− 1 forces s > 0, we get (iii). To
see (i), we note that an epimorphism of the form (25) cannot exist in this range.

To check the last statement, note that AZ cannot have the combinatorial type of a free
arrangement AZ0 if tZ,z < k− 1, for necessarily we have c2(TZ0) = k(k+ r) and we would
get tZ0,z0 < k − 1 for some z0 ∈ Z0 contradicting (iii). Also, we cannot have tZ,z = k − 1
or tZ,z = k + r − 1 for any z ∈ Z for otherwise AZ would be free by (ii). Then by (i) we
get tZ,z ≥ k + r for all z ∈ Z. �

6. Arrangements with a point of not as high multiplicity

We turn now our attention to line arrangements with a point of high multiplicity, but
just one less than in the case of Theorem 3. In this setting, we will show that, for free
arrangements with exponents (k, k + r) having a point of multiplicity k − 1, in the range
k ≤ 3r + 5, freeness is a combinatorial property at least for real arrangements. The
same happens for complex line arrangements in case k ≤ 5. As an application, we see that
Terao’s conjecture holds for configurations of m lines in P2

C for m ≤ 12. As far as we know,
this had been checked for m ≤ 10 lines, see [WY07]. However, Theorem 3 essentially takes
care of the cases m ≤ 10 with no need of combinatorial subtleties. On the other hand, for
m = 11, 12 we need to describe the geometric picture that arises when the arrangement is
not free.

Given an arrangement of lines A and a point x ∈ DA, we write Ax for the set of lines
of A passing through x.
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Proposition 6.1. Let k be any field. Let k ≥ 1, r ≥ 0 be integers with k ≤ 3r + 5 and
set m = 2k + r + 1. Let A0 be a free arrangement with exponents (k, k + r), let A have
the same combinatorial type as A0 and assume that A has a point x of multiplicy k − 1.

If A is not free, then all singular points of A\Ax are contained in a line H. Moreover,
H passes through x and does not lie in A, and A∪H is free with exponents (k−1, k+r+2).

Proof. Let Z and Z0 be the sets of points in P2 corresponding to A and A0, so A = AZ
and A0 = AZ0 . Let L = Lx ⊂ P̌2 be the line corresponding to the (k − 1)-tuple point x
of A. Working as in the proof of Theorem 3, we write down the exact sequence (13) for
h = k − 1, and we obtain an exact sequence of the form (15):

(26) 0→ OP2(−2− k − r)→ TZ → IΓ(2− k)→ 0.

Just like in Theorem 3, we have that A fails to be free precisely when H0(P2, IΓ(1)) 6= 0.
So by assumption the subscheme Γ ⊂ P2 is contained in a line H, which is the line we
need.

Let us now show that H has the required properties. Recall from the proof of Theorem
3 that Γ is the locus of singular points of A \ Ax. Dually Γ is the set of bisecant lines to
Z ′ = Z \ L that meet L away from Z. The first statement of the lemma is thus proved.
Let w ∈ P̌2 correspond to H, so H = Hw. Computing Chern classes, we get that Γ is a
subscheme of length 2r + 4 of P2.

Let us prove that the point w does not lie in Z, i.e., H 6∈ A. The fact that Γ sits in H
means that the bisecant lines to Z ′ that meet L away from Z all meet at w. If w belongs to
Z, then this is a combinatorial property that must also hold for Z0, namely the subscheme
Γ0 associated to Z0 should be contained in a line Hw0 corresponding to the meeting point
w0. But A0 is free so by Lemma 3.2 we have H0(P2, TZ0(k − 1)) = H0(P2, IΓ0(1)) = 0.
Hence Γ0 lies in no line.

Now we consider the set of points Z̃ = Z ∪ {w} and the corresponding arrangement Ã.
We first want to show that tZ̃,w = k+2r+2. Restricting to H the surjection TZ → IΓ(2−k)

we get (TZ)|H � OH(−k − 2r − 2). Since c1((TZ)|H) = −2k − r, we get:

(27) (TZ)|H ' OH(−k − 2r − 2)⊕OH(r + 2− k).

Of course A is obtained from Ã by deletion of w, so we get an exact sequence like (23):

(28) 0→ TZ̃ → TZ → OHz(−tZ̃,w)→ 0.

By our interpretation of Γ, the value of tZ̃,w is at least the length of Γ, i.e., tZ̃,w ≥ 2r+4.

By our numerical assumption, this implies tZ̃,w > k − r − 2. So using (i) of Proposition

5.3 and (27) we get tZ̃,w = k + 2r + 2.

Let us now see that w lies in L, i.e., x ∈ H. Assuming the contrary, and let s be
the number (with multiplicity) of bisecant lines to Z passing through w and one point of
Z ∩ L. We have tZ̃,w = 2r + s + 4. Since Γ has length 2r + 4, there are at least 2r + 5

points of Z that contribute to Γ (there are precisely 2r + 5 such points in case they are
all aligned, and even more points in case they lie on several lines). So there are at most
2k + r + 1− |Z ∩ L| − (2r + 5) = k − r − 3 points of Z that contribute to the s bisecant
lines above. So s ≤ k− r− 3. Hence tZ̃,w ≤ k+ r+ 1, which contradicts tZ̃,w = k+ 2r+ 2.

Finally, let us check that Ã is free with exponents (k − 1, k + r + 2). To do this,
recall that H0(P2, IΓ(1)) 6= 0 gives H0(P2, TZ(k − 1)) 6= 0 and look at the associated map
OP2(1 − k) → TZ . Note that the map OP2(−k − r − 2) → TZ of (26) does not factor
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through OP2(1− k)→ TZ , for in that case its cokernel would have torsion. This gives:

0→ OP2(−k − r − 2)⊕OP2(1− k)→ TZ → OHw(−k − 2r − 2)→ 0.

Since any non-zero map TZ → OHw(−k − 2r − 2) gives the same kernel, comparing the
above display and (28), we get OP2(−k − r − 2)⊕OP2(1− k) ' TZ̃ . �

6.1. Real arrangements with a point of high multiplicity. Here, we show that
freeness of real arrangements with exponents (k, k+ r) having a point of multiplicity k−1
is combinatorial in our range k ≤ 5 + 3r, by proving that the alignment of the previous
proposition is impossible over R.

Theorem 5. Assume k is a subfield of R, let k ≥ 1, r ≥ 0 be integers, and set m =
2k + r + 1. Suppose k ≤ 5 + 3r. Let A be an arrangement of m lines with a point of
multiplicity k−1, having the same combinatorial type of a free arrangement with exponents
(k, k + r). Then A is also free with exponents (k, k + r).

Proof. If A is free, then its exponents are necessarily (k, k + r), so we have only to prove
that A is free. Let us assume that A is not free, and see that this leads to a contradiction.

We let again Z be the set of points of P̌2 corresponding to A so A = AZ , and we let L
be a line of P̌2 containing precisely k − 1 points of Z, corresponding to the (k − 1)-tuple
point of A. Set Z ′ = Z \L. By the previous proposition, there is a point w ∈ L \Z which
is the intersection point of all strict h-secant lines (for h ≥ 2) to Z ′ that are strict h-secant
to Z too (i.e. they are not (h+ 1)-secant to Z).

Set Z ′′ = {w}∪(Z∩L). We have k+r+2 points in P̌2 (the points of Z ′), and the set Z ′′

of k points in L, such that any bisecant line to Z ′ cuts L along Z ′′. If we let now L be the
line at infinity in P̌2, we see that Z ′ is a set of k + r + 2 points of an affine 2-dimensional
space, that determines at most k directions. But, since we are working over R, the set
Z ′ should determine at least k + r + 1 ≥ k + 1 directions, according to Ungar’s theorem,
see [Ung82]. This is a contradiction. �

6.2. Combinatorial nature of freeness for low exponents. Here we show that free-
ness of arrangements with exponents (k, k + r) is combinatorial when k ≤ 5, by proving
that the combinatorics of Proposition 6.1 is actually impossible for k ≤ 5.

Theorem 6. Assume k is a subfield C. Let 0 ≤ k ≤ 5 and r ≥ 0 be integers, and A
be a line arrangement, having the same combinatorial type of a free arrangement with
exponents (k, k + r). Then A is also free with exponents (k, k + r).

We fix again our notation: we consider the finite set of point Z in P̌2 corresponding
to A so that A = AZ . We also consider another finite set of point Z0 ⊂ P̌2, such that
A0 = AZ0 is free with exponents (k, k + r), and has the same combinatorial type as A.

We will need Hirzebruch’s inequality (see [Hir83]), in the “improved” version:

(29) bA,2 + 3
4bA,3 ≥ m+

∑
h≥5(2h− 9)bA,h,

valid for arrangements A of m complex projective lines with bA,m = bA,m−1 = bA,m−2 = 0.

Lemma 6.2. Assume that A is free with exponents (k, k + r), with r ≥ 0, k ≥ 1, that A
has points of multiplicity 3 at most, and that not all lines of A pass through a point. Then
the possible pairs (k, k+ r) are (1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 4) or (4, 4). In the last
case, A has the combinatorial type of the dual Hesse arrangement.



18 DANIELE FAENZI AND JEAN VALLÈS

Proof. The set Z ⊂ P̌2 of points corresponding to A has no alignment of 4 points. By
Corollary 4.2, Z is non-degenerate, since k ≥ 1. Since bA,t = 0 for t ≥ 4, the relations (10)
and (11) allow to compute bA,2 and bA,3:

bA,2 = −k(k + r − 4)− r(r − 2), bA,3 = k(k + r − 1) +
r(r − 1)

2
.

Of course bA,2 ≥ 0, so if r ≥ 2 we have k + r ≤ 4 hence (k, k + r) equals (1, 3), (1, 4), or
(2, 4). In view of (ii) of Corollary 4.2, in cases (1, 3) and (1, 4), the set Z should then have
a 4-secant line, which contradicts the hypothesis. A quick calculation shows that (2, 4)
contradicts (29).

We are left with r = 0 and k ≤ 4 or r = 1 and k ≤ 3, which are the cases allowed by our
statement. In case r = 0, k = 4, we get bA,3 = 12 and bA,2 = 0, which is the combinatorial
type of the arrangement of 9 lines dual to the 9 inflection points of a smooth cubic curve
as in Example 4.4. �

It is worth noting that, in the setup of the previous lemma, there are more cases in
positive characteristic. For instance, if k = Z/2Z, the case (k, k + r) = (2, 4) corresponds
to the 7 points of P2

k. In this case bA,2 = 0 and bA,3 = 7, and A is free with exponents
(2, 4).

Proof of Theorem 6. We know that, if A is free, then its exponents are (k, k + r), so we
only have to check freeness of A. We take up our usual dual notation. If Z is degenerate,
the statement is clear by Corollary 4.2. If Z is non-degenerate, then, in order for A0 to be
free, the set of points Z0 must have at least a trisecant line, so the same must happen to
Z. If there is no 4-secant line to Z, then by the previous lemma we have k ≤ 3 or k = 4.
In the former case, the existence of trisecant lines to Z forces A to be free by Theorem 3.
In the latter case, we are done by Example 4.4.

We move forward to the case when the set of points Z has 4-secant lines: let L ⊂ P̌2

be one of them. Again by Theorem 3, we can assume that any 4-secant line to Z is
strict, and that k is at least 5 so in fact k = 5. So we assume that A is not free and
we seek a contradiction. Note that in this range we can use Proposition 6, so there is a
point w ∈ L \ Z which is the intersection point of all strict h-secant lines (for h ≥ 2) to

Z ′ = Z \ L that are strict h-secant to Z too. We let Z̃ = Z ∪ {w}.
We call Γ the set of these lines, according to the notation set up in Proposition 6. Recall

that, according to the proof of this proposition, Γ appears as a subscheme of P2 of length
2r + 4 obtained by reduction step through the 4-secant line L. Denote by si the number
of strict i-secants to Z \ L though w. We have:

s1 + 2s2 + 3s3 + 4s4 = r + 7, s2 + 2s3 + 3s4 = 2r + 4.

We get s2 + s3 + s4 < 3 − r so r ≤ 2. One sees easily that the case r = 2 is in fact
impossible.

Let us look at the case r = 0. There are three subcases to look at, corresponding to the
values of (s1, . . . , s4), namely (1, 0, 2, 0), or (0, 2, 1, 0), or (1, 1, 0, 1). In all of them Z̃ has

no h-secants with h ≥ 6 and all 5-secants to Z̃ comes from a 4-secant to Z through w. So
we have 1 or 2 strict 5-secants to Z̃. If bÃ,5 = 2, by Lemma 2.1 we get bÃ,2 = 3bÃ,4 + 1

and bÃ,3 = 15− 3bÃ,4. So 0 ≤ bÃ,4 ≤ 5, by formula (29) we actually get:

(30) bÃ,5 = 2 =⇒ 3 ≤ bÃ,4 ≤ 5.
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If bÃ,5 = 1, then bÃ,2 = 3bÃ,4 − 7 and bÃ,3 = 21− 3bÃ,4 so 3 ≤ bÃ,4 ≤ 7. By (29) we get:

(31) bÃ,5 = 1 =⇒ 6 ≤ bÃ,4 ≤ 7.

We want thus to bound the number of 4-secants to Z̃.

w •
z8
•

z9
•

z10
•

z11
•

z1•

z2•
z3
• L2

z5•

z6•

z7•
L1

z4•
L

Figure 2. Case (i)

i) Γ consists of 2 strict 3-secants L1 and L2 to Z passing through w. In this case we have
a point z ∈ Z lying off the lines of Γ (z = z4 in the figure above). We see that bÃ,5 = 1

and bÃ,4 ≤ 5 since any strict 4-secant to Z̃ besides the 4-secants L1 and L2 through

w must pass through the triples of points on Li. This contradicts the inequality (31).

w •
z8
•

z9
•

z10
•

z11
•

z1•

z2•

z3
•

z4
•

z5•

z6•

z7•

L

L3

L1
L2

Figure 3. Case (ii)

ii) Γ consists of 2 strict bisecant lines L1, L2 and one strict 3-secant line L3 to Z passing
through w. Let the {z2i−1, z2i} = Li ∩ Z for i = 1, 2. In this case, again bÃ,5 = 1

and bÃ,4 ≤ 5 since all strict 4-secant lines to Z̃ are L3 and, at most, the lines [z1, z3],

[z1, z4], [z2, z3], [z2, z4]. Again we contradict (31).
iii) Γ consists of one strict bisecant line L1 and one strict 4-secant line L2 to Z passing

through w. In this case we have bÃ,5 = 2. We have one point z lying off of L1∪L2∪L,

and any strict 4-secant line to Z̃ passes through z and Z ∩L1, so that bÃ,4 ≤ 2. This

contradicts (30).

The case r = 0 is thus settled (i.e. m = 11 lines). Let us look at r = 1, i.e. m = 12.

In this case, Γ has length 6, Z̃ has no 6-secants and there are 8 points in Z̃ \L. The only

possible configuration consists of 3 strict 5-secant lines to Z̃ meeting at w, among which
is L, i.e. we must have (s1, . . . , s4) = (0, 0, 0, 2). Moreover, any bisecant line to Z̃ is in
fact a trisecant line. This contradicts a lemma due to Kelly, [Kel86, Lemma 2].
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For r ≥ 2, Γ has length 2r + 4, Z̃ has no 6-secants and there are r + 7 points in Z̃ \ L.
This is impossible. �

Since free arrangements of m ≤ 12 lines have exponents (k, k+r) with r ≥ 0 and k ≤ 5,
we get the following corollary.

Corollary 6.3. Terao’s conjecture holds for up to 12 lines in P2
C.
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