
ULRICH BUNDLES ON K3 SURFACES

DANIELE FAENZI

Abstract. We show that any polarized K3 surface supports special Ulrich bundles of rank 2.

Given an n-dimensional closed subvariety X ⊂ PN , a coherent sheaf F on X is Ulrich if

H
∗
(F (−t)) = 0 for 1 ≤ t ≤ n. We refer to [Cos17, Bea18] for an introduction. We mention that Ul-

rich sheaves are related to Chow forms (this was the main motivation for they study in [ESW03]),

to determinantal representations and generalized Cli�ord algebras, to Boij-Söderberg theory

(cf. [SE10]) to the minimal resolution conjecture, and to the representation type of varieties

(cf. [FP15]).

Conjecturally, Ulrich sheaves exist for anyX , see [ESW03]. �ey are known to exist for several

classes of varieties e.g. complete intersections, curves, Veronese, Segre, Grassmann varieties.

Low-rank Ulrich bundles on surfaces have been studied intensively, and Ulrich bundles of rank

2 (or sometimes 1) are known in many cases. We refer to [Cas17,Bea18] for a survey and further

references. Let us only review some of the cases that are most relevant for us, namely among

surfaces with trivial canonical bundle.

In [Bea16], Ulrich bundles of rank 2 are proved to exist on abelian surfaces. In [AFO17],

it is proved that K3 surfaces support Ulrich bundles of rank 2, provided that some Noether-

Lefschetz open condition is satis�ed. �e case of quartic surfaces was previously analyzed in

detail in [CKM12]. �e main techniques used so far are the Serre construction starting from

points on X and Lazarsfeld-Mukai bundles.

In this note, we show that any K3 surface supports an Ulrich bundle E of rank 2 with c1(E) =

3H , for any polarization H . So these bundles are special, cf. [ESW03]. We allow singular surfaces

with trivial canonical bundle. �e main tool is an enhancement of Serre’s construction based on

unobstructedness of simple sheaves on a K3 surface.

Let us state the result more precisely. We work over an algebraically closed �eld k . Let X be

an integral (i.e. reduced and irreducible) projective surface with ωX ' OX and H
1
(OX ) = 0. We

denote by Xsm the smooth locus of X .

Fix a very ample divisor H on X . Under the closed embedding given by the complete linear

series |OX (H )| we may view X as a subvariety of some projective space Pд . A hyperplane section

C of X is a projective Gorenstein curve of arithmetic genus д with ωC ' OC (H ), where H also

denotes the restriction of H to C. We may choose C to be integral too.

A locally Cohen-Macaulay sheaf E on X is arithmetically Cohen-Macaulay (ACM) if

H
1
(E(tH )) = 0 for all t ∈ Z. A special class of ACM sheaves are Ulrich sheaves, which are char-

acterized by the property H
∗
(E(−tH )) = 0 for t = 1, 2. Of course all these notions depend on the

polarization H . We call simple a sheaf whose only endomorphisms are homotheties.

�eorem 1. Let X and H be as above. �en there exists a simple Ulrich vector bundle of rank 2 on
X whose determinant is OX (3H ).

�e strategy to prove the theorem is the following. First we build an ACM vector bundle E of

rank 2 by Serre’s construction applied to a projective coordinate system in X . �en we perform
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an elementary modi�cation of E along a single generic point p ∈ X , producing a simple non-

re�exive sheaf having the Chern character of an Ulrich bundle. Finally we �atly deform such

sheaf and check that generically this yields the desired Ulrich bundle.

Prior to all this, we start by observing that the trivial bundle is a (trivial) example of ACM line

bundle. Indeed, using that H
1
(OX ) = 0 and that C is connected, one checks that H

1
(OX (−H )) = 0.

In turn, this easily implies H
1
(OX (−tH )) = 0 for all t ≥ 2. Also, Serre duality and triviality of

ωX give H
1
(OX (tH )) = 0 for all t ≥ 0. �is way, we see that OX is an ACM line bundle on X .

Combining this with Max Noether’s theorem on the generation of the canonical ring of curves

(cf. [Ros52] for a version for Gorenstein curves) one obtains, working as in [SD74, �eorem 6.1],

that X ⊂ Pд is an ACM surface of degree 2д − 2.

However this line bundle is never Ulrich, nor is any line bundle of the form OX (dH ). So

generically (for instance when X has Picard number 1) the surface X will not support Ulrich line

bundles. We thus move to rank two and start by constructing a simple ACM bundle.

Lemma 1. Let Z ⊂ Xsm be a set of д + 2 points in general linear position. �en there is a unique
coherent sheaf E of rank 2 ��ing into a non-spli�ing exact sequence:

(1) 0→ OX → E → IZ (H ) → 0.

�e sheaf E is locally free, simple and ACM. It satis�es:

E ' E∗(H ), h
0

(E) = 1, h
1

(E) = h
2

(E) = 0 ext
1

X (E, E) = 2д + 4.

Proof. Taking cohomology of the exact sequence

(2) 0→ IZ (H ) → OX (H ) → OZ → 0,

and using the fact that Z is in general linear position and hence contained in no hyperplane, we

get H
0
(IZ (H )) = 0 and h

1

(IZ (H )) = 1.

By Serre duality we get ext
1

X (IZ (H ),OX ) = h
1

(IZ (H )) = 1 so, up to proportionality, there is a

unique non-spli�ing extension of the desired form. Correspondingly, there exists a unique coher-

ent sheaf E of rank two ��ing into a non-spli�ing exact sequence of the form (1). �e sheaf E we

obtain this way satis�es h
0

(E) = 1 and H
1
(E) ' Ext

1

X (E,OX )
∗ = 0 because applying HomX (−,OX )

to (1) we obtain a non-zero map (and thus an isomorphism) H
0
(OX ) → Ext

1

X (IZ (H ),OX ).

�is map is the dual of the homomorphism H
1
(IZ (H )) → H

2
(OX ) obtained by taking global

sections in (1). So H
1
(E) = H

2
(E) = 0.

If X is smooth we deduce that E is locally free from the Cayley-Bacharach property, cf. for

instance [HL97, �eorem 5.1.1]. Indeed, since Z is in general linear position (i.e. Z is a projective

frame in Pд), no hyperplane passes through any subset of д+1 points of Z . Anyway the statement

follows in general by a minor modi�cation of the argument appearing in [FP15, Lemma 7.2].

Indeed by the local-to-global spectral sequence, using H
1
(OX (−H )) = 0 and HomX (IZ (H ),OX ) '

OX (−H ) we get the following exact sequence:

0→ Ext
1

X (IZ (H ),OX ) → H
0
(Ext1

X (IZ (H ),OX )) → H
2
(X ,OX (−H )) → 0.

In turn, using Ext1

X (IZ (H ),OX ) ' ωZ ' OZ and H
2
(X ,OX (−H )) ' H

0
(X ,OX (H ))

∗
, if we choose Z to

be a projective coordinate system of Pд , we rewrite this exact sequence as:

0→ Ext
1

X (IZ (H ),OX ) → H
0
(OZ )

©«
1 · · · 0 1

...
. . .

...
...

0 · · · 1 1

ª®®®®®¬
−−−−−−−−−−−−−−−−→ H

0
(X ,OX (H ))

∗ → 0.

So Ext
1

X (IZ (H ),OX ) is generated by the vector (1, . . . , 1,−1)t and since this vector corresponds to

an extension in Ext1

X (IZ (H ),OX ) which is non-zero at any point of Z we have that the sequence

de�ning E is locally non-split around each point of Z , which in turn implies that E is locally free

at each such point (and hence everywhere). From c1(E) = H , since E is locally free of rank 2, we

get a canonical isomorphism E ' E∗(H ).
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Let us prove that E is ACM. We already have h
1

(E) = 0 and thus by Serre duality h
1

(E(−H )) =

h
1

(E∗(H )) = h
1

(E) = 0. Also h
0

(E(−H )) = 0 and h
2

(E(−H )) = 1. Note that, choosing an integral

hyperplane section curve C that avoids Z , (1) becomes:

0→ OC → E|C → OC (H ) → 0.

From H
k
(E(−H )) = 0 for k = 0, 1 we deduce h

0

(E|C ) = 1 so the previous exact sequence does not

split. �en h
0

(E|C (−H )) = 0. �is easily implies H
1
(E(−2H )) = 0 and actually H

1
(E(−tH )) = 0 for

all t ≥ 2. Serre duality now gives H
1
(E(tH )) = 0 for all t ≥ 1. In other words E is ACM.

It remains to check that E is simple. Applying HomX (E,−) to the exact sequence (2) we

get that the non-zero space HomX (E,IZ (H )) is contained in HomX (E,OX (H )) ' H
0
(E) ' k , so

homX (E,IZ (H )) = 1. As HomX (E,OZ ) is a skyscraper sheaf of rank 2 at Z we have ext
k
X (E,OZ ) =

(2д + 4)δ0,k . We deduce ext
1

X (E,IZ (H )) = 2д + 4 and ext
0

X (E,IZ (H )) = 0.

�erefore, applying HomX (E,−) to the (1), since HomX (E,OX ) ' h
2

(E) = 0 we get that EndX (E)

is contained in HomX (E,IZ (H )) and is therefore 1-dimensional. �is says that E is simple. By

Serre duality ext
2

X (E, E) = 1. We deduce ext
1

X (E, E) = ext
1

X (E,IZ (H )) = 2д + 4. �

Given a reduced subscheme Z ∈ Hilbд+2(Xsm) consisting of points in general linear position,

there is a unique rank-2 bundle associated with Z according to the previous lemma. We denote

it by EZ . We write Op for the skyscraper sheaf of a point p ∈ X .

Lemma 2. Assume η : EZ → Op is surjective. �en Eη = ker(η) is a simple sheaf with:

c1(E
η ) = H , c2(E

η ) = д + 3, ext
1

X (E
η , Eη ) = 2д + 8.

Proof. Recall that E = EZ is simple and observe that this implies HomX (E, E
η ) = 0, as the compo-

sition of any non-zero map E → Eη with Eη ↪→ E would provide a self-map of E which is not a

multiple of the identity. Also, since E is locally free we have homX (E,Op ) = 2 and Ext
k
X (E,Op ) = 0

for k > 0. �erefore, using Lemma 1 and applying HomX (E,−) to the exact sequence:

(3) 0→ Eη → E → Op → 0.

we obtain ext
1

X (E, E
η ) = 2д + 5 and ext

2

X (E, E
η ) = 1.

Next, Serre duality gives ext
k
X (Op , E) = 2δ2,k , while ext

k
X (Op ,Op ) is the dimension of the k-th

exterior power of the normal bundle of p in X and thus takes value

(
2

k

)
. �erefore, applying

HomX (Op ,−) to (3) we �nd ext
1

X (Op , E
η ) = 1 and ext

2

X (Op , E
η ) = 3. Pu�ing these computations

together and applying HomX (−, E
η ) again to (3) we get:

homX (E
η , Eη ) = ext

2

X (E
η , Eη ) = 1, ext

1

X (E
η , Eη ) = 2д + 8.

�e computation of Chern classes is straightforward. �

Lemma 3. Let p ∈ Xsm \Z . �en, for a generic map η : EZ → Op , the induced map on global sections
H

0
(η) : H

0
(EZ ) → H

0
(Op ) is an isomorphism.

Proof. Put E = EZ . It su�ces to check that there exists η such that the induced map H
0
(η) :

k ' H
0
(E) → H

0
(Op ) ' k is an isomorphism, for this is an open condition. To do it, we apply

HomX (IZ (H ),−) to the exact sequence:

0→ Ip → OX → Op → 0.

�is gives an exact sequence:

Ext
1

X (IZ (H ),Ip ) → Ext
1

X (IZ (H ),OX ) → Ext
1

X (IZ (H ),Op ).

Observe that HomX (IZ (H ),Op ) ' Op and Ext1

X (IZ (H ),Op ) = 0 as these sheaves are computed

locally onX and, since p∩Z = ∅, we may choose an open cover ofX consisting of subsets where IZ

is trivial or Op vanishes. �en the local-to-global spectral sequence gives Ext
1

X (IZ (H ),Op ) = 0 so
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the extension corresponding to (1) admits a li�ing to Ip . In other words, we get the commutative

exact diagram:

0

��

0

��
0 // Ip

��

// Eη //

��

IZ (H ) // 0

0 // OX //

��

E //

η
��

IZ (H ) // 0

Op

��

Op

��
0 0

where η and Eη are de�ned by the diagram. For this choice of η we get, by the top row of the

diagram, H
0
(Eη ) = 0, which implies that H

0
(η) is an isomorphism. �

By the previous lemma, we may choose EZ as in Lemma 1, a pointp ∈ Xsm\Z , some η : EZ � Op
and consider the sheaf Eη . �e goal is to deform Eη (H ) to an Ulrich bundle. We use the notation

F ∗s for (Fs )
∗

(which is a priori not the same as (F ∗)s ).

Lemma 4. �ere exist a smooth connected variety S0 of dimension 2д+8 and a �at family of simple
sheaves F on X × S0 such that Fs (H ) is an Ulrich bundle for s generic in S0 and Fs0

' Eη for some
distinguished point s0 of S0.

Proof. We proved in Lemma 2 that Eη is simple. Since the non-locally free locus of Eη is disjoint

from the singular locus of X , we may apply the arguments of [Muk84, �eorem 0.1]. In particular

(cf. [AK80]) the moduli functor of simple sheaves on X is pro-represented by a moduli space SplX
which can be constructed in the étale topology and which is smooth of dimension 2д + 8 at Eη

(this is essentially [Muk84, �eorem 0.3]). �erefore there exists an open piece of SplX which is

a quasi-projective variety S equipped with a �at family F of simple sheaves on X , such that the

induced map S → SplX is a local isomorphism around the point corresponding to Eη . We denote

by s0 this point, so that Fs0
' Eη .

We may assume that S is smooth and connected of dimension 2д + 8. Since the re�exive hull

E of Eη is locally free and satis�es the assumption of [Art90, Corollary 1.5], we get that Fs is

locally free for all s in an open dense subset S1 of S .

Now observe that H
∗
(Fs0
) = 0 by Lemmas 1 and 3. �en, semicontinuity ensures that H

∗
(Fs ) =

0 for all s in an open dense subset S0 of S1. �erefore, the isomorphism F ∗s ' Fs (−H ) and Serre

duality give H
i
(Fs (−H )) ' H

2−i
(F ∗s (H ))

∗ ' H
2−i
(Fs )

∗ = 0. �is says that Fs (H ) is a special Ulrich

bundle, for all s ∈ S0. �

For the reader’s bene�t we also provide a proof of Lemma 4 independent of [Art90]. �e point

is to check that Fs is locally free for all s in an open dense subset of S . To do this, �rst recall again

that the non-locally free locus of Eη is disjoint from the singular locus of X , so up to shrinking S

we may assume that this happens for Fs for all s ∈ S . �en F ∗∗s is locally free for s ∈ S .

Next, we may �nd an integer t0 ≤ −1 such that H
0
(F ∗∗s (t0H )) = H

1
(F ∗∗s (t0H )) = 0 for all s ∈ S .

�is can be done for instance using Kollar’s theory of husks (cf. [Kol08]), which gives a strat-

i�cation (Si )i=1, ...,r of S such that F ∗∗s de�nes a �at family of sheaves on X parametrized by Si .

Using base change over each each Si one �nds ti satisfying the required vanishing together with

H
0
(F ∗∗s (tiH )|C ) = 0, for a �xed curve C ∈ |OX (H )|. �en t0 can be taken to be the minimum among

t1, . . . , tr .

Recall that H
∗
(Fs0
) = 0 and observe that (3) gives:

h
1

(Fs0
(tH )) =

{
1 if t ≤ −1,

0 if t ≥ 0.
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By semi-continuity, we have thus H
∗
(Fs ) = 0, h

1

(Fs (tH )) = 0 for all t ≥ 0 and h
1

(Fs (tH )) ≤ 1 for

t ≤ −1 for all s in an open dense subset of S . We still call S this subset.

Next, for all s ∈ S we consider the double dual sequence:

(4) 0→ Fs → F
∗∗
s → τ (Fs ) → 0.

where the torsion sheaf τ (FP ) is de�ned by the sequence. Put `s for the length of τ (Fs ).

Since H
0
(F ∗∗s (t0H )) = H

1
(F ∗∗s (t0H )) = 0, from the previous exact sequence we get `s =

h
0

(τ (Fs )) = h
1

(Fs (t0H )) ≤ 1 (we neglect to indicate the twist on zero-dimensional sheaves).

Now we have two alternatives. Namely, either for s general enough in S one has `s = 0, i.e.

τ (Fs ) = 0; or otherwise for all s ∈ S we get `s = 1, i.e. τ (Fs ) ' Ops , for some point ps ∈ X with

ps0
= p.

In the �rst case, we have Fs ' F
∗∗
s and Fs is locally free. So we would like to rule out the

second alternative. By contradiction we assume that, for all s ∈ S , we have τ (Fs ) ' Ops . �is gives

a map γ : S → X associating ps to s. �is time F ∗∗ is �at over S and (4) is the restriction to X × {s}

of a sequence on X × S :

0→ F → F ∗∗ → τ (F ) → 0,

with (Fs )
∗∗ ' (F ∗∗)s and where τ (F ) is a line bundle supported on the graph of γ .

Also, again the previous exact sequence together with H
∗
(Fs ) = 0 gives h

0

(F ∗∗s ) = 1 so that

F ∗∗s has a unique non-zero global section up to a scalar. �is section vanishes along a subscheme

Zs ⊂ X and, up to shrinking again S we may assume that Zs is zero-dimensional reduced and in

general linear position, because these are open conditions, so that F ∗∗s ' EZs .

For each sheaf F ∗∗s of this family, we denote by ηs : F ∗∗s � Ops the induced surjection of

F ∗∗s onto τ (Fs ). We think of ηs as an element of P(H0
(F ∗∗s |ps )) ' P

1
(we adopt the convention

of writing P(V ) for the projective space of hyperplanes of a vector space V ). Plainly, we have

F ∗∗s0

' Eη , τ (Fs0
) ' Op and ηs0

is identi�ed with η. Note that Fs = ker(ηs ).

We assert that the family F is parametrized by an open subset T of the set of triples:

{(W ,q, ξ ) |W ∈ Hilbд+2(X ), q ∈ X , ξ ∈ P(H
0
(EW |q ))}.

�e subset T consists of (W ,q, ξ ) withW ⊂ Xsm is reduced and in general linear position in X ,

q ∈ Xsm \W and ξ is surjective. Given such a triple, we get the sheaf ker(ξ ) which is simple by

Lemma 2. Clearly this gives a �at deformation of Eη so, because S → SplX is a local isomorphism

at Eη , there is a possibly smaller open subset T0 such that all the resulting sheaves ker(ξ ) are of

the form Fs , for some s ∈ S . By construction any sheaf Fs should be of this form by taking q = ps ,

W = Zs and ξ = ηs .

But T0 is an open dense subset of a P1
-bundle over an open subset of Hilbд+2(X ) × X and thus

has dimension 1 + 2(д + 2) + 2 = 2д + 7. �erefore T0 cannot dominate S , as dim(S) = 2д + 8. �is

says that the second alternative does not take place, so we have proved that Fs (H ) is an Ulrich

bundle for general s.

Recall the notation MX (v) for the moduli space of H-semistable sheaves F on X whose Mukai

vector v = (v0,v1,v2) satis�es v0 = rk(F ), v1 = c1(F ) and v2 = χ (F ) − rk(F ). From [Qin93, Lemma

2.1] we obtain the following stronger version of �eorem 1.

Corollary 1. IfX is smooth, MX (2,H ,−2) is of dimension 2д+8 and a general point of it corresponds
to a sheaf E which is stable (with respect to all polarizations) and such that E(H ) is a special Ulrich
bundle.

Again, we also o�er a proof independent of [Qin93, Art90]. Consider the family of Ulrich

sheaves F (H )with parameter space S0 constructed in the previous lemma. Recall that, for generic

s ∈ S0, the sheaf Fs (H ) is Ulrich, hence semistable with Ulrich sheaves as Jordan-Hölder factors

(cf. [FP15, Lemma 7.1]). So we have to check that Fs is not strictly semistable. If it was, we would

have an exact sequence:

(5) 0→ L → Fs → L
∗(H ) → 0,
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where L(H ) is an Ulrich sheaf or rank 1 on X . Actually L(H ) is an Ulrich line bundle since X

is smooth. Since L and L∗(H ) are rigid in view of H
1
(OX ) = 0, they do not depend on s, which

justi�es the notation. Since L(H ) is an Ulrich line bundle we have χ (L) = χ (L(−H )) = 0 which

gives L2 = −4 and LH = д − 1, where L = c1(L). Similar constraints hold for H − L. In particular, L

and H − L have the same degree with respect to H , hence h
0

(OX (2L−H )) ≤ 1, with equality being

a�ained if and only if L ≡ H − L. Likewise, h
2

(OX (2L −H )) = h
0

(OX (H − 2L)) ≤ 1. Now we observe

the following bound:

ext
1

X (L
∗(H ),L) = h

1

(OX (2L − H )) =

= h
0

(OX (2L − H )) + h
2

(OX (2L − H )) − χ (OX (2L − H )) ≤

≤ 2 − χ (OX (2L − H )) = д + 7,

the last equation being obtained by Riemann-Roch a�er plugging L2 = −4 and HL = д−1. In view

of the rigidity of H −L and L, the family of sheaves appearing as an extension (5) is parametrized

by P(Ext
1

X (L
∗(H ),L)) and hence has dimension at most д + 6. So this family cannot dominate the

(2д + 8)-dimensional family S0, a contradiction.

It follows from �eorem 1 that X is strictly Ulrich wild in the sense of [FP15]. �e next

result re�nes this fact in terms of moduli spaces. It was proved when Pic(X ) is generated by H

in [AFO17, �eorem 2.7]. A modi�cation of that argument allows to prove the result in general.

�eorem 2. Let X be a K3 surface and H be a very ample line bundle on X . �en, for any positive
integer r , the moduli space MX (2r , rH ,−2r ) is of dimension 2(r2(д + 3) + 1). Given a general sheaf F
in this space, F (H ) is a stable Ulrich bundle.

Proof. Given a coherent sheaf E or rank r > 0 onX we write P(E) ∈ Q[t] for the Hilbert polynomial

of E and p(E) for its reduced version, namely P(E) = χ (E(tH )) and p(E) = P(E)/r . We put p0 =

(д − 1)(t + 1)t so that, if E is an Ulrich sheaf, then p(E(−H )) = p0. Note that, if E1 and E2 are

non-isomorphic stable sheaves with p(E1) = p(E2), then Ext
k
X (Ei , Ej ) = 0 for k = 0, 2 and i , j.

�e proof goes by induction on r , the case r = 1 being given by Corollary 1. For r ≥ 1, we

select a stable bundle E2 in MX (2r , rH ,−2r ) given by the induction hypothesis and a stable bundle

E1 in MX (2,H ,−2), with Ei (H ) Ulrich for i = 1, 2, taking care that E1 is not isomorphic to E2 for

r = 1. �is is of course possible since dim(MX (2,H ,−2)) > 0. �is way we have:

Ext
k
X (Ei , Ej ) = 0, for k = 0, 2 and i , j,(6)

ext
1

X (Ei , Ej ) = 2r (д + 3) for i , j.(7)

Note that, for any choice of ζ ∈ P(Ext
1

X (E2, E1)), the sheaf Eζ ��ing as middle term of the

associated extension is a locally free semistable sheaf, with Eζ (H ) (as extension of sheaves having

these properties). By direct computation, we see that it lies MX (2(r + 1), (r + 1)H ,−2(r + 1)). Of

course this sheaf is not stable, as E1 is a sub-sheaf of Eζ with quotient E2 and the reduced Hilbert

polynomial of all these sheaves is p0. However, it follows by [FP15, �eorem A, ii)] that Eζ is

simple, as the representation of the associated Kronecker consists of a single non-zero map of

one-dimensional vector spaces, and as such it is simple. Alternatively one may apply [PLT09,

Proposition 5.3].

We record the de�ning sequence:

(8) 0→ E1 → E
ζ → E2 → 0.

In the same spirit as in Lemma 4, we take a deformation of Eζ in the space of simple sheaves,

which is unobstructed of dimension 2((r + 1)2(д + 3) + 1) at Eζ . We consider thus an integral

quasi-projective variety S as base of an S-�at family of simple sheaves Fs with Fs (H ) Ulrich for

all s and Fs0
' Eζ for some s0 ∈ S , the base S being locally isomorphic to the moduli space of

simple sheaves around the point s0. We may assume that Fs is locally free for all s ∈ S .

Claim 1. �ere is an open dense subset S0 of S such that, for any stable sheafK with rk(K) < 2(r+1),
rk(K) , 2 and p(K) = p0, we have HomX (K,Fs ) = 0, for all s ∈ S0.
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Proof of the claim. Clearly it su�ces to �nd such open subset for a �xed rank u of K and take

the intersection of the corresponding open subsets for all u < 2(r + 1), u , 2.

So let N be the moduli space of stable sheaves E on X with Hilbert polynomial P(E) = up0.

Let U be a quasi-universal family over X ×N, cf. [HL97, Proposition 4.6.2] and denote by σ and

π the projection maps X ×N→ N and X ×N→ X , respectively.

For y ∈ N let Uy be the corresponding sheaf over X . We observe that, applying HomX (Uy ,−)

to (8), using the de�nition of N and ζ and the fact that the Ei ’s are stable with p(Ei ) = p(Uy ) we

get HomX (Uy , E
ζ ) = 0. Indeed, the only case to check is for u = 2r when y corresponds to the

sheaf E2, but HomX (E2, E
ζ ) = 0, for otherwise by stability of E2 the exact sequence (8) would

split, contradicting our assumption on ζ .

�en, Serre duality gives, for all y ∈ N:

(9) H
2
((Eζ )∗ ⊗ Uy ) ' Ext

2

X (E
ζ ,Uy ) = 0.

Now consider X ×N×S , put τ for the projection N×S → S and denote by σ̄ , π̄ , τ̄ the projection

maps from X × N × S onto X × S , N × S and X × N, respectively. Let V = π̄ ∗(F ∗) ⊗ τ̄ ∗(U). Since

V is �at over the integral base N × S and σ̄ has relative dimension 2, base-change gives, for all

(y, s) ∈ N × S :

(10) R2σ̄∗(V)(y,s) ' H
2
(F ∗s ⊗ Uy ).

Let W be the support of R2σ∗(V), i.e. the closed subset of points (y, s) ∈ N × S such that

R2σ∗(V)(y,s) , 0. By (9) and (10), we have W ∩ N × {s0} = ∅, i.e. s0 does not lie in τ (W ). �en

there is an open neighbourhood S0 ⊂ S of s0 which is disjoint from τ (W ). Again by (10), we get

H
2
(F ∗s ⊗ Uy ) = 0 for all (y, s) ∈ N × S0, which proves the claim. �

Let us now conclude the proof of the theorem. In view of the claim, we have two alternatives

for s generic in S0: either Hom(K,Fs ) = 0 for any stable sheaf K with rk(K) < 2(r + 1) and

p(K) = p0, or otherwise this happens for all such K except for rk(K) = 2 and there actually exists

a stable K in N such that Hom(K,Fs ) , 0.

In the �rst alternative Fs is stable, so we assume that the second one takes place and look for

a contradiction. We go back to Claim 1 and carry out the same argument for u = 2, with y0 being

the point corresponding to E1. Observe that K must lie in MX (2,H ,−2) as the proof of Claim 1

applies verbatim on any other component of N.

We note thatW ∩N× {s0} = {(y0, s0)}, as clearly HomX (K, E
ζ ) = 0 for all K in N \ {y0}. SoW is

properly contained in N × S . Moreover, we easily have homX (E1, E
ζ ) = 1. Recall by construction

of the quasi-universal family that there is u0 such that rk(U) = 2u0 and that, for y ∈ N, the sheaf

Uy is a direct sum of u0 copies of the stable sheaf of rank 2 in MX (2,H ,−2) corresponding to

y. �erefore, the sheaf R2σ̄∗(V)(y,s) has rank at least u0 at any (y, s) ∈ W , and rank precisely u0

at (y0, s0). So there is an open dense subset W0 of W where R2σ̄∗(V) is free of rank u0. For any

(y, s) ∈W0, the stable sheaf K corresponding to y satis�es homX (K,Fs ) = 1; up to proportionality

we have thus a unique non-zero map ηy,s : K → Fs . Stability easily impies that ηy,s is injective,

so there is an exact sequence:

0→ K → Fs → K
′ → 0,

for a well-de�ned sheaf K ′ = coker(ηy,s ), for all (y, s) ∈W0.

For s = s0 the sheaf K ′ is just E2 so, by openness of stability, up to shrinking W0 we may

assume that K ′ is stable for all (y, s) ∈W0. Note that K ′ lies in M(2r , rH ,−2r ).

Under our assumption, such sequence should exist for any s in an open neighbourhood of s0.

�en the family of sheaves F should be dominated by the family of extensions of K by K ′ as s

varies around s0. We see that the dimension of this family of extensions is:

dim(MX (2,H ,−2)) + dim(MX (2r , rH ,−2r )) + dim(PExt
1

X (K
′,K)),

which equals 2(r (r +1)+1)(д+3)+3, as it follows by formulas (6), (7) applied to K and K ′ instead

of E1 and E2. On the other hand, the dimension of S is 2((r +1)2(д+3)+1). �e di�erence of these

dimensions is 2r (д+ 3) − 1 and since this is always positive for r ≥ 1, д ≥ 3, we get that the family
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of simples sheaves appearing as extensions cannot be dense in S0. �is contradiction concludes

the proof. �

�e previous result is in some sense optimal as general K3 surfaces do not support Ulrich

bundles of odd rank, cf. [AFO17, Corollary 2.2].

Remark 1. An argument similar to the one of �eorem 1 has been used to construct ACM

and Ulrich bundles on Fano threefolds of index 1. Indeed, it follows from the main result of

[BF11] that any smooth Fano threefold of Picard number 1 and index 1, containing a line L with

normal bundle OL⊕OL(−1) (such a threefold was called “ordinary” in that paper) admits an Ulrich

bundle of rank 2. Ulrich sheaves of rank 2 are precisely ACM sheaves E with c1(E(−H )) = H and

c2(E(−H )) = (д + 3)L, where L ⊂ X is a line. We do not know if the same result holds for non-

ordinary threefolds.

Remark 2. �eorem 1 implies for instance that any integral quartic surface supports an Ulrich

bundle of rank 2. If X is not integral, then X must the union of (possibly multiple) surfaces of

degree ≥ 3. For each component it is possible to �nd a rank-2 Ulrich bundle, we refer to [FP15,

Lemma 7.2] for the slightly delicate case of singular cubic surfaces. �is yields existence of an

Ulrich sheaf of rank 2 on an arbitrary quartic surface.

However the resulting sheaf will fail to be locally free over the intersection of the components.

Finding locally free Ulrich sheaves of rank 2 seems more tricky when X is not irreducible and

might be impossible when X is not reduced. To justify this let us mention that, for instance if X

the union of two distinct double planes, the rank of any locally free Ulrich sheaf on X must be a

multiple of 4 by [BHMP16, Proposition 4.14].

I would like to thank M. Aprodu, G. Casnati, A. Perego, J. Pons-Llopis and P. Stellari for useful

discussions. I am grateful to the referee for useful remarks.
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Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France


	References

