SOME REMARKS ON VECTOR BUNDLES WITH NO
INTERMEDIATE COHOMOLOGY

DANIELE FAENZI

ABSTRACT. We prove that a general surface of degree d is the Pfaffian of a
square matrix with (almost) quadratic entries if and only if d < 15. We classify
rank 2 aCM bundles (i.e. with no intermediate cohomology) on a general sextic
surface. A recursively defined matrix presenting the spinor bundle on a smooth
quadric hypersurface is shown.

1. INTRODUCTION

Given a sheaf & on a projective variety Y polarized by €y (1), we consider the
cohomology modules:

HL(Y, &) = @D HP(Y, 6 ® Oy (1))
teZ

Here we will focus on those sheaves & that satisfy HL(Y, &) = 0 for all 0 <
p < dim(Y). These are called sheaves with no intermediate cohomology, or aCM
sheaves, standing for arithmetically Cohen-Macaulay, indeed Hg(Y7 &) is a Cohen-
Macaulay module over the coordinate ring of Y iff & is an aCM sheaf.

It is possible to classify all aCM bundles on projective space, (Horrocks, [Hor64]),
quadrics (Knoérrer, [Kno87]) and few other varieties, see [BGS87] and [EH88]. On
the other hand, a detailed study of the families aCM bundles of low rank has been
carried out in some cases, for instance some Fano threefolds (see e.g. [Mad02],
[ACO0], [AF06]) and Grassmannians, [AG99]. An even richer literature is devoted
to aCM bundles of rank 2 on hypersurfaces Y, of degree d in P". If n > 4, and
Yy, is general, the classification is complete, as it results from the papers [Kle7§],
[CMO00], [CMO04], [CMO05], [KRRO5], [KRROG].

On the other hand, for n = 3, the classification has been completed only up to
d < 5, see [Fae05], [CF06], while only partial results are available for higher d, see
for instance [Bea00].

Here we will draw a few remarks on aCM bundles, mainly on hypersurfaces. In
the next section we provide a slight generalization of a result of Beauville [Bea00],
namely the structure of the minimal graded free resolution of an aCM sheaf on a
projective variety.

In Section [3, we focus on surfaces Yy of degree d in P3. We first note that
the general Y, supports an aCM bundle & of rank 2 with det(&) = Oy, (d — 2) if
and only if d < 15. This is proved with Macaulay 2 and amounts to writing the
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equation of Y, as the Pfaffian of a certain skew-symmetric matrix. Next we will
extend the classification of aCM bundles of rank 2 to sextic surfaces.

Finally, in Section [4] we give a recursive formula for the matrix appearing in the
minimal graded free resolution of a spinor bundle on a smooth quadric.

2. A GENERAL REMARK

Here we reformulate a result of Beauville, see [Bea00] in a slightly more general
setup, with essentially the same proof. We refer to the minimal graded free resolu-
tion of a sheaf & on P™ as to the sheafification of the minimal graded free resolution
of the module H?(P", &) over the polynomial ring in n 4 1 variables.

Remark 2.1. Let ¢ : X < P = P" be a subscheme of codimension r, and let &
be an aCM sheaf of rank s on X. Then the minimal graded free resolution of ¢,&
takes the form:

0P, I8 o Lo Py 28 50, with Py = @ Os(as).
j=1
We have > (—1); = 0, and the ideal of minors of order s+ 1 of fy is contained

in the ideal Ix.

fr—1 L;

Proof. Given the inclusion ¢ : X < P, we consider a minimal graded free resolution
of the sheaf ¢,.& over P. This takes the form:

(2.1) v = P> - 5 Pg— 1.& — 0.

Set K; = ker(f;—1 : P; = P;—1) and Ky = ker(p). For each i > 0, consider the
induced exact sequence:

HY(P,P;,1) — HY(P, K;) — HL(P, K1) — H:X(P,Piyq).

In this sequence, the rightmost group vanishes, and the leftmost map is surjective
by definition of a graded free resolution. Then we have H! (P,K;4+1) = 0, and by
the same reason H.(P, Ky) = 0. Since & aCM on X, we obtain H?(K;) = 0 for
0<p<n—r+i+1. Therefore we get HY(P,K,_1) = 0 for 0 < p < n so K,
splits by Horrocks criterion. The ¢;’s sum to zero for ¢,& is a torsion sheaf. The
condition on minors follows, since the rank of fy must decrease by s on the support
of &. O

Given a vector bundle & and an invertible sheaf . on X, if € is 1 or —1, we say

that an isomorphism s : & — &* ® £ is an e-symmetric duality if s = e .

Proposition 2.2 (Odd codimension). Let ¢ : X — P = P" be a subvariety of
pure codimension r = 2s + 1, and let & be an aCM vector bundle on X. Assume
char(k) # 2, and suppose that there exists an e-symmetric duality:

K: éai)@‘”*(@wx(t—i—n—&—l).
Then the minimal resolution of ¢.& takes the form:

T T
(2.2) 0= PL(t) = - 225 Pr) L Py Zh o 5 Py S Py 16— 0,

where the map g, satisfies:

g;l' =&0s-
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Proof. Consider the minimal graded free resolution provided by Remark 2.1} Apply
the functor sZomp(—, Op), and recall the Grothendieck duality isomorphism:

Extp(E,0x) 2 1,E, with: &' =& @wx(n+1).

We have thus a second minimal graded free resolution of 1,.&, of the form f;" :
P ,(t) = PI(t). The duality  : & — &'(¢t) lifts to an isomorphism between the
two resolutions. This means that, for each 0 < ¢ < r, we have an isomorphism
& Py — P31 (1) satisfying:

(2.3) CGiofi=fasio&r1, [ o0&l =&l 10 fasi

Now we may lift the map &, ,_;—€¢&; to P3,_,(¢), and thus getting a morphism
@; : P; = P35 _.(t) which satisfies the relation:

2s—1

(2.4) f2Ts—i ©QY; = €2Ts+1—7l —€&.

We define the map ; : P; — P35, _;(t) by:
€
(2.5) (05 :§i+§f2Tsfio<Pi-

Note that t; is an isomorphism since f), ;0¥ = fy,,1_;0& and & is an
isomorphism. The required maps g; are defined by:

J— wiilof;s—ia fOI‘Z'ZS—i—17
20 9= { fi, otherwise.

We obtain thus a resolution of the form (2.2)), and one can easily check the
relation g = ¢ g,. (Il

Proposition 2.3 (Even codimension). Let k, ¢+ : X — P, &, k be as in the
hypothesis of Proposition 2.2 and assume r = 2 s + 2 for some integer s. Then the
minimal resolution of ¢,& takes the form:

J T
0= PA(t) = - = PE(t) 2 Pyyy 25 Py — - = Py 2% Py — 1,8 — 0,
where J is an isomorphism P} (t) — P,y satisfying:
JT=el

Proof. The proof is analogous to that of Proposition [2.2] where we replace the
defining equation (2.4) of ¢; by the following:

(2.7) §;s+2—i —e&i = f21+1—z‘ O @i,

and the definitions (2.5)) and (2.6)) of ¢; and g; by the following:

g
(2.8) ¢l = El _|_ §f2—rs+1—i o ()01,7
(2.9) gi = wflof;s+1—iv fori>s+1,
. ’ fi, otherwise.

We obtain 24,11 = &1 + €&, s0 setting J = thyq we get J ' =eJ. O
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3. PFAFFIAN SURFACES

From now on we will assume that the field k is algebraically closed of charac-
teristic zero. Recall that a torsionfree sheaf & on a polarized variety Y is called
initialized if H*(Y, &) # 0, and H(Y, &(—1)) = 0.

Let us introduce some notation. Given a projective variety Y C P", polarized by
Oy (1), we write hy for the Hilbert function of Y, and R(Y") for the coordinate ring
of Y, so that hy () = dimg(R(Y):). We define also the difference Hilbert function,
Ay (t) = hy(t) — hy (t = 1).

Given a smooth projective surface Y, polarized by Hy = ¢1(0y (1)), and given an
integer r and the Chern classes (c1, ¢2), we denote by My (r, ¢1, ¢2) the moduli space
of Gieseker-semistable sheaves with respect to Hy, of rank r with Chern classes
c1,co. We will often denote the Chern Classes by a pair integers: this stands for ¢y
times Hy and ¢y times the class of a point in Y.

Recall that the vanishing locus Z of a nonzero global section of a rank 2 initialized
bundle & on a surface Y is arithmetically Gorenstein (i.e. Rz is a Gorenstein ring)
if and only if & is aCM. The indez iz of a zero-dimensional aG subscheme Z is the
largest integer ¢ such that hz(c) < len(Z).

For basic material on aCM bundles and aG subschemes we refer to [IK99],
[Die96]. In particular we recall the notation (i, m,d), see [CF06, Section 3.
We will make use of the computer algebra package Macaulay 2, see [GS].

3.1. Quadratic Pfaffians. Here we will prove that a general surface Yy of degree
d is the Pfaffian of a skew-symmetric matrix with quadratic entries if and only if
d < 15. This sentence makes sense only if d is an even number, so we will look for
almost quadratic matrices when d is odd. This means a matrix of the form:

(3.1) Op(—2)% @ Op(—1) —» OF @ Op(-1).

A surface Yy can be written as an (almost) quadratic Pfaffian if and only if there
is an aCM initialized rank 2 bundle & on Yy with ¢;(&) = d — 2. Note by [CF06,
Proposition 4.1] that in this case we have c3(&) = d(d — 1) (d — 2)/3, so our result
amounts to the next proposition. Remark that we always have ¢;(&) < d — 1, so
c1(&) = d — 2 is called the submazimal case.

Proposition 3.1 (Submaximal). On the general surface Yy C P = P3| it is defined
a rank 2 initialized aCM bundle & with:
d(d—1)(d—2
Cl((g)):d—2, CQ((’?)Z%7
if and only if d > 15.

Proof. Note that the aCM bundle & is defined on a surface Yy if and only if Yy
contains an aG subscheme Z of length m = d (d—1) (d—2)/3, and index i = 2d—6.
This means that the function hz must agree with hp up to degree d — 3 and
symmetric around d — 2. In particular hy is uniquely determined.

The dimension of the component %, (i, m,d) of the scheme ¥(i,m,d) equals
4d? —4d—1, see [[K99]. Then, given a surface Yy in the image of py, ; 4 we have:

dim(Im(py, s,a)) < 4d* —4d —1—dim(p;}; ;(Ya)) <
<4d®—4d—1—d+1—dim(My,(2,d —2,m)) <
d? —18d + 41

<4d®>-5d
< + 5
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It is easy it see that this quantity is strictly less than h(P, &p(d)) — 1 for d > 15.
So the map p, ;.4 cannot be dominant for d > 15.

To prove the converse, we use the package Macaulay 2. We distinguish two cases
according to the parity of d. If d is even, we take a matrix f of size d with random
quadratic entries. If d is odd, we let f be a generic mapping of the form .

In both cases, we consider the map Pf which associates to a skew-symmetric
matrix the square root of its determinant. We would like to prove that Pf is
dominant at the point represented by the matrix f, for each d < 15. We consider
the the ideal J of Pfaffians of order d — 2, and we multiply it by the maximal ideal
m. By Adler’s method (see the appendix of [BeaOQ]), our claim takes place if we
show the equality:

dimy ((J - m)4) = 0.
For each d < 15, this is can be checked with the Macaulay 2 script:

isPrime (32003)

kk=77/32003

S = kk[x_0..x_3]

ranQuad = (el,e2,8) -> (
-- a random skew-symmetrix matrix on S of order el+e2
-— where el entries are linear
-- and e2 entries are quadratic
e:=el+e2;
N1:=binomial(el,2);
N2:=binomial(e2,2);
N12:=elx*e2;
N:=binomial (e,2);
R:=kk[t_0..t_(N-1)];
G:=genericSkewMatrix(R,t_0,e);
substitute(G,random(S~{0},S"{N1:0,N12:-1,N2:-2}))
)

isDom = (d)->(
M := ranQuad((d-2*floor(d/2)),d,S);
PF := ideal(x_0..x_3)#*pfaffians(2*ceiling(d/2)-2,M);
(0 == hilbertFunction(d,S/PF))
)

This returns the value True for each d < 15, in the approximate time of two
hours on a personal computer. [

3.2. Pfaffian sextic surfaces. Here we give a classify aCM bundles of rank 2
on a general sextic surface X. In particular we assume that X is smooth and
Pic(X) =2 Z. We let & be a rank 2 initialized indecomposable aCM bundle on X,
with Chern classes c1, co, and Z be the vanishing locus of a nonzero global section
of &.

Lemma 3.2. Assume ¢; = 1. Then the following values for ¢; and Ay take place:

c2 JJ]O]1]2]3]4
5 1] 1]1]1]1
s ll1]2l2]2]1
(3.2) 113331
12134131
1313|531
413531



6 DANIELE FAENZI

Proof. The scheme Z with a Hilbert function hz as in the first (respectively, the
second) row of represents 5 collinear points (respectively, a planar complete
intersection of type 2,4). Such a subscheme is indeed contained in X.

On the other hand, the subschemes represented by the remaining rows are defined
on X by virtue of [CF06, Lemma 3.2 and Proposition 6.3]. This completes the
proof. ([l

Lemma 3.3. Let & and X be as above, and suppose ¢; = 2. Then the following
instances of ¢o and Az occur on X:

cp|J]O]1]2]3]4]5
4133331
(3.3) 16134431
181135531
201(l1]3]6|6|3]|1

Proof. The case given by the last row of is given by [CE06, Lemma 3.2 and
Theorem 6.12]. To check the remaining cases, observe that a scheme Z with the
required Hilbert function is contained in a quintic surface Y. We have the exact
sequence:

0—)@3/—)9\—)‘]2))/(3)%0,

where .% is an aCM indecomposable bundle on Y. Note that .% is not initialized,
while .#(—1) is. We have ¢1(#(—1)) = 1 and c2(F (1)) = len(Z) — 10 € {4, 6, 8}.
Our conclusion follows, since an initialized aCM indecomposable bundle with these

Chern classes is defined on the general quintic surface Y, see [CE06, Proposition
4.5 and Lemma 3.2]). O

Lemma 3.4. Let & and X be as above, and assume ¢; = 3. Then the following
cases for co and Az take place on X:

c2||]o]1]2]3|4]5]6
261366 [6]3]1
(3.4) 2713 |4a| 7 |6[3]1
281013 |5| 8 |6]3]1
201(3|6| 9 |6[3]1
30|13 |6|106]3]1

Proof. Consider first the first 4 cases. Working as in the previous lemma, we
consider a general quintic surface Y and an exact sequence:

0= 0y - F — Jzy(4) =0,
where .# is an aCM indecomposable bundle on Y (not initialized). We have
1 (F(-1)) = 2, co(F (1)) = len(Z) — 15 € {11,12,13,14}. Then we conclude
by [CE06l Proposition 6.3 and Lemma 3.2]).
To work out the last case, we let f be a general skew-symmetric of the form:

f : ﬁp(—2)9 D ﬁp(—g) — ﬁ[p(—].)g © ﬁ]p.

Making use a Macaulay?2 script analogous to the one used in the proof of Propo-
sition [3.1] one can easily prove that the general sextic surface is defined by the
Pfaffian of a matrix of the this form. On the other hand, the sheaf cok(f) is a rank
2 aCM initialized bundle with the required invariants. O

We can now prove the following result.
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Proposition 3.5. Let X be a general sextic surface. Then the following list de-
scribes all the rank 2 initialized indecomposable aCM bundles & on X.
ci(&) || 3] -2 -1 | o | 1 | 2 | 3 | 4 ] 5
(&) T | 2 |3,45]4,6,8]5,8,11,12,13,14 | 14, 16, 18,20 | 26, 27, 28,29,30 | 40 | 55

Proof. By the above lemmas, all the cases mentioned in the table take place on X.

On the other hand, by [CF06, Propositions 4.1 and 4.2], the Chern classes of &
are bounded by the values of our table. This takes care of all the cases, except for
C1 = 1.

Considering the zero locus Z of a nonzero section of & and its ideal sheaf Jy,
assuming H°(X, Jz(1)) = 0 we immediately get the possibilities c; = len(Z) €
{11,...,14}. On the other hand if H°(X,Jz(1)) # 0, Z must be a complete inter-
section subscheme of the projective plane. Since the aG subscheme Z has index 4,
it corresponds either to 5 collinear points, or to the intersection of a plane quartic
and a conic. This completes the proof. O

4. QUADRIC HYPERSURFACES

By the results of Knorrer, [Kno87] it is well-known that any aCM indecomposable
initialized bundle on a smooth quadric @, is either trivial either isomorphic to a
spinor bundle. Resolutions of the spinor bundle are obtained in [BEHS7].

Here we provide a recursive explicit formula to define a matrix of linear forms
whose cokernel is a spinor bundle .. In other words, we write down an explicit
minimal graded free resolution of .. For basic material on spinor bundles we refer
to [Ott88].

4.1. Odd dimensional quadrics. Fix a positive integer k£ and set n = 2k — 1.
Let Q be the quadric hypersurface in P**! defined by the equation:
(4.1) Q= V(x% +x1T0+ ..+ TpTag)-

Denote by ¢ : Q < P"*! the natural inclusion. We denote by .# the spinor
bundle on @, and we recall that it is uniquely determined up to isomorphism. The
vector bundle .# has rank 2¥~!. Moreover, the bundle .#(1) is globally generated
and we have H°(Q,.#(1)) = S, where S is the spin representation of Spin(n + 2).
In particular we have h"(Q,.7(1)) = 2.

In order to show an explicit presentation matrix for the extension to zero ¢..#(1),
we first define recursively the following skew-diagonal matrices:

_ 0 Aj1 _
Remark 4.1. The matrices A; satisfy the following duality:
Al =(-1)l2lA;

Proposition 4.2 (Odd dimensional quadric). Let n = 2k — 1, let @ be defined
by (4.1), and let . be the spinor bundle on @. The the bundle .#(1) admits the
following minimal graded free resolution:

0= S*® Opnsr(—1) L S@ Opnir — 1,.7(1) = 0,

where f is defined by f = fi, with f; recursively constructed as:

1A i
(43) S Cicirry Y Lo N R RS
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where A; is given by (4.2). In particular, the duality . = .#*(—1) is:
e skew symmetric if and only if £ = 2,3 mod 4,
e symmetric if and only if kK =0,1 mod 4.

Proof. We work by induction on the integer k. Looking at the matrix f; defined
recursively by , we have to show that its rank decreases to 2°~1 over Q = Q,,.
This is the case if the determinant of f equals (22 + z122 + ... + ZnTpn11), to the
power 2F~1,

Let us we start with Q = @Q; C P2. In this case, the spinor bundle .¥ is
nothing but the line bundle &(—p), where p is a point in Q1. In our basis we have
Q1 = V(23 + 2172). So the extension to zero ¢,.%(1) in this case is presented by
the following matrix:

(4.4) (_”20 ig) .

This proves that the first step in the induction actually takes place. Now set
qi for the equation of () = Qor_1 written as a:% + 2129 + ... + TpTpy1, and set
N;, = 2%~ for brevity. Now we develop the determinant of f; in the following way.
For any j < k we choose j entries in the diagonal block x,,Aj_1, and multiply 7 by
the corresponding minor. Since Ag_1 is a diagonal matrix, we will correspondingly
obtain the factor mfl 41 in the development.

By the induction hypothesis, all nonvanishing minors of fi_1 give a factor q,ivfl_ 7,
Since we have (Ajf’“) choices we get the equation:

Ny N
. " ,
det(fr) = ( ‘ ) G (En@ng) =
— J
=0
= (qh—1 + TnTni1)VE = o .
This proves the claim concerning the resolution of ¢,.#(1). The statements about
duality follows from Remark O

Note that, cutting the quadric Qo1 with two hyperplanes of the form z, =
Zn+1 = 0, and substituting into (4.3), we obtain a block matrix presenting two
copies of the spinor bundle on the quadric Qo _3.

4.2. Even dimensional quadrics. In an analogous way we consider even dimen-
sional quadrics. Given a positive integer k, we set n = 2k and we consider the
quadric hypersurface of P"! given by:

(45) Q = V(Illig + 234+ ...+ $0$n+1).

The hypersurface ) is homogeneous under the action of the algebraic group
Spin(n + 2). Over @, we have two non isomorphic spinor bundles, denoted by
%+ and .#~, both of rank 2¥~!. For ¢ € {+,—}, the space of global section
H%(Q,.7¢(1)) is isomorphic to the spin representation S¢ of dimension 2* of the
group Spin(n + 2).

This time we define recursively the matrices f; and g; by:

1A i
ae)  f= (T Ly ). fo=10.
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T2j-18j1 gi1
4‘7 = 1 = 4 ! 9 = In .
(4.7) 9j <(—1)J 1fj—1 (_1)]$2jAj_1> go = Tp+1
with A given by (4.2).
Proposition 4.3 (Even dimensional quadric). Let k > 1, set n = 2k, and let /*,

<~ be the spinor bundles on the smooth n-dimensional quadric @ defined by (4.5]).
Then ¢, 7 (1) and ¢,..#~ (1) have the following minimal graded free resolution:

0= (ST ® Opnsr (—1) L ST @ Opns — 1.7 (1) — 0,

0— (S*)* @ Opnir(—1) L S™ @ Opnsr — 1,§7(1) = 0,
with f = fx, g = gx. In particular for n = 0 mod 4, the dualities . (1) = (& 1)*,
(1) =2 () are:

e skew symmetric if and only if £ =2 mod 4,
e symmetric if and only if K =0 mod 4.

Proof. The proof differs from that of Proposition only the first step in the
induction. So we consider the two dimensional quadric:

Q2 = V(xox3 + T172).
The two non isomorphic spinor bundles in this case are the line bundles &'(—1,0)

and €(0,—1), corresponding to the two rulings of the quadric surface as P! x P!
Their resolutions are given by the following two matrices:

X2 xo x1 Zo
= ; g1 = :
—I3 1 —I3 T2

And clearly the determinant of both matrices is the equation of the quadric Q5.
O

Note that, restricting to the hyperplane z,4+1 = x¢, we obtain the matrix of the
odd dimensional case.

Finally we formulate the following result, which is an analogue of Remark
only the ambient space is now a smooth quadric. We don’t have an analogue of
Proposition 2.2 or 2.3} we illustrate the reason with an example.

Remark 4.4. Let X be a subscheme of codimension 7 of a smooth quadric Q) C
P+! and let & be an aCM bundle on X. Then & admits the resolution:

0—-P,®LT®L” -P,_; = --- > Py —=&—0, with
0 ot 0

(4.8) Pi=0q,(a;;) LT=B 7)) L" =P (q;).
j=1 j=1 j=1

Proof. The argument is analogous to that of Proposition[2.1} We consider a minimal
graded free resolution of the form (2.1)) of &, with P; free over @, and the kernel
Ki = ker(fi_l : Pi — Pi—l)-

This time, the bundle K, _; is aCM on @,,. Thus, by [Kn687], it must decompose

in the form (4.8)). O

Remark 4.5. Even if & admits a duality k, the resolution might not be self dual.
Indeed, we have:

Extg (ST (1) @7~ (1), 7T e.s7) #0.
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This provides a nontrivial obstruction to lifting x to Po — PX(¢). A statement
analogous to Proposition and holds if P, = &0 (a,;), see Example

Example 4.6. Let X be the complete intersection of two general quadrics Q' and
Q? in P?, and let & be an initialized indecomposable aCM bundle of rank 2 on X.
Then by [ACO0] there are precisely 3 deformation classes for &. They are classified
by the first and second Chern classes, which can be (0,1), (1,2) or (2,6).

The resolution of ¢,& over P? takes the form:

N

(c1,2) = (0,1)| 0 oD@ o(-3)* L (-2 L 00 0(—-1)* - 1.6 =0,
T

(c1,2) = (L,2)| 0 0(=3* L o(-2tao-1)* L ot = .6 -0,

N
(c1,2) = (2,6)| 0 0(-2°® L o(-1)® L 6% 5.6 0.

On the other hand, we let j : X — Q = Q' be the natural inclusion and we
consider the resolutions of j,&. This takes the form:

(4.9) (c1,¢2) = (0,1) 0= Og(-2)® ST @I = 0@ 0g(—1)* = 1.6 =0,
(4.10) (c1,¢2) = (2,6) 0= Og(—1)* = 64 — 1.6 >0
(4.11) (c1,¢2) = (1,2) 0= (SN2 @ (F7)? = 05 = 1.6 = 0.

Here the resolutions (4.9) and (4.11)) are not self dual, while (4.10) is.
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