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Abstract. According to Mukai and Iliev, a smooth prime Fano three-
fold X of genus 9 is associated with a surface P(V), ruled over a smooth
plane quartic Γ, and the derived category of Γ embeds into that of X
by a theorem of Kuznetsov.

We use this setup to study the moduli spaces of rank-2 stable sheaves
on X with odd determinant. For each c2 ≥ 7, we prove that a component
of their moduli space MX(2, 1, c2) is birational to a Brill-Noether locus of
vector bundles with fixed rank and degree on Γ, having enough sections
when twisted by V.

For c2 = 7, we prove that MX(2, 1, 7) is isomorphic to the blow-up of
the Picard variety Pic2(Γ) along the curve parametrizing lines contained
in X.

1. Introduction

Let X be a smooth complex projective threefold, whose Picard group is
generated by an ample divisor HX . We consider Maruyama’s coarse moduli
scheme MX(r, c1, c2) of HX -semistable rank r sheaves F on X with ci(F ) =
ci and c3(F ) = 0. This moduli space is a projective variety, and not much
more is known in general; still many results are available in special cases. For
instance, rank 2 bundles on P3 have been intensively studied since [Bar77].

Since [AHDM78] and [AW77], the case which has attracted most attention
is that of instanton bundles on P3 , i.e. stable rank 2 bundles F with c1(F ) =
0 and H1(P3, F (−2)) = 0. The starting points to analyze these bundles are
given by Beilinson’s theorem describing the derived category of Pn, and by
the related notion of monad, see [BH78]. Smoothness of the moduli space of
these bundles has recently been announced for any c2 (see [JV11]) together
with irreducibility for odd c2 (see [Tik11]).

If one desires to set up a similar analysis over a threefold X other than P3,
one direction is to look at Fano threefolds. Recall that if the anticanonical
divisor −KX is linearly equivalent to iXHX , for some positive integer iX
and ample HX , then the variety X is called a Fano threefold of index iX . A
natural way to generalize instanton bundles to X would appear to consider
stable rank 2 bundles E on X with:

(1.1) H1(X, E) = 0, E∗⊗ωX ∼= E .
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In the case X = P3, the bundle E(2) would thus be an instanton bundle.
In this paper we look at Fano threefolds X of index 1, and study the

moduli space MX(2, c1, c2), and its subspace consisting of bundles E with
the above property. The genus of a Fano threefold X of index 1 is defined
as g = H3

X/2 + 1. Note that one can assume c1 ∈ {0, 1}, so we speak of
bundles with odd or even determinant. The bundles satisfying (1.1) have
odd determinant for iX = 1, in fact c1(E(1)) = 1, and one can dare call
them odd instantons. See [Fae11] for more on these notions.

To describe our point of view, let us start with low c2. One sees that
MX(2, 1, c2) is empty for c2 < mg = dg/2e+1. The case of minimal c2 = mg

is well understood, and we refer to the survey we gave in [BF11]. For higher
c2, we constructed in [BF08] a component M(d) of MX(2, 1, d), whose general
element is a vector bundle F (−1) = E such that E is an odd instanton, i.e.
it satisfies (1.1). In order to study the component M(d) and, as far as
possible, the whole space MX(2, 1, d), our idea is to make use of Kuznetsov’s
semiorthogonal decomposition of the derived category of X (see [Kuz06]).
This provides a suitable homological method, rephrasing the language of
monads and Beilinson’s theorem.

To state our results, we focus on Fano threefoldsX of genus 9. Recall that,
by a result of Mukai, [Muk88,Muk89], the variety X is a linear section of the
Lagrangian Grassmannian sixfold Σ = LG(3, 6), that is X = Σ ∩ P11. We
consider the projectively dual plane quartic Γ = Σ∨ ∩ P2, obtained cutting
the dual variety of Σ with the linear section orthogonal toX, and the integral
functor Φ! : Db(X) → Db(Γ), according to Kuznetsov’s theorem, [Kuz06].
This functor is right adjoint to the fully faithful functor Φ, provided by the
universal sheaf E on X × Γ for the fine moduli space:

Γ ∼= MX(2, 1, 6).

Recall that the threefold X is associated with a rank 2 stable bundle V on
Γ, in such a way that P(V) is isomorphic to the Hilbert scheme H 0

2 (X)
of conics contained in X, see [Ili03]. The main result of this paper is the
following.

Theorem. The map ϕ : F 7→ Φ!(F ) gives:

A) for any d ≥ 8, a birational map of M(d) to a generically smooth (2d−11)-
dimensional component of the Brill-Noether locus:

{F ∈ MΓ(d− 6, d− 5) | h0(Γ,V ⊗F) ≥ d− 6};
B) an isomorphism of MX(2, 1, 7) with the blow-up of Pic2(Γ) along a curve

isomorphic to the Hilbert scheme H 0
1 (X) of lines contained in X. The

exceptional divisor consists of the sheaves in MX(2, 1, 7) which are not
globally generated.

In particular we prove that MX(2, 1, 7) is an irreducible threefold which is
smooth as soon as H 0

1 (X) is smooth. Note that this result closely resembles
those of [Dru00], [IM00], [MT01], regarding rank 2 sheaves on a smooth cubic
threefold in P4, and relying on the Abel-Jacobi mapping.

The paper is organized as follows. In the next section we set up some
notation. Then, in Section 3, we review the geometry of prime Fano three-
folds X of genus 9, and we interpret some well-known facts concerning lines
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and conics contained in X in the language of vector bundles and derived
categories. In Section 4, we prove part (A) of the theorem above. Section 5
is devoted to part (B).

Acknowledgments. We would like to thank the referee for many useful
comments that helped us correct some arguments and simplify some of the
proofs.

2. Definitions and preliminary results

In this section we will collect some preliminary material and set up some
notation.

2.1. Basic material. Let n be a positive integer. We consider a smooth
connected complex projective n-dimensional variety X, equipped with an
ample divisor class HX . The canonical bundle of X is denoted by ωX .

Given a subscheme Z of X, we write FZ for F ⊗OZ and we denote by
IZ,X the ideal sheaf of Z in X, and by NZ,X its normal sheaf. We will
frequently drop the second subscript. The degree deg(L) of a divisor class
L over X is defined as the degree of L ·Hn−1

X .

2.1.1. Cohomology and derived categories. Given a pair of coherent sheaves
(F,E) on X, we will write extkX(F,E) for the dimension of the vector space

ExtkX(F,E), and similarly hk(X,F ) = dim Hk(X,F ). The Euler charac-
teristic of (F,E) is defined as χ(F,E) =

∑
k(−1)k extkX(F,E) and χ(F ) is

defined as χ(OX , F ).
Given two sheaves E,F , we denote by eE,F the natural evaluation map:

eE,F : HomX(E,F )⊗E → F.

A sheaf F on X is called simple if homX(F, F ) = 1, and exceptional if it is
simple and moreover ExtkX(F, F ) = 0 for all k ≥ 1.

As a basic tool, we will use the derived category Db(X) of complexes
of coherent sheaves on X with bounded cohomology. For definitions and
notation we refer to [GM96]. In particular we write [j] for the j-th shift to
the left in the derived category, and by D(−) the anti-auto-equivalence of
Db(X) defined by D(−) = RHomX(−,OX).

Recall that a subcategory A of Db(X) is called left or right admissible
if the inclusion iA : A ↪→ Db(X) has a left or right adjoint, which will be
denoted as usual by i∗A and i !

A (A is called admissible if it is so in both

ways). Assuming A admissible, we have Db(X) = 〈A,⊥A〉 = 〈A⊥,A〉, A⊥
is left admissible and ⊥A is right admissible. In this situation, the left and
right mutations through A are defined respectively as:

LA = iA⊥i
∗
A⊥ and RA = i⊥Ai

!
⊥A.

We refer to [Gor90,Bon89] for more details.
If A is generated by an exceptional object A, and B is an object of Db(X),

the left and right mutations of B through A are defined, respectively, by the
triangles:

LAB[−1]→ Hom(A,B)⊗A→ B → LAB,

RAB → A→ Hom(A,B)∗ ⊗B → RAB[1].
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2.1.2. ACM varieties and sheaves. Assume HX very ample, so that X is a
smooth n-dimensional subvariety of Pm. Given a coherent sheaf F on X, we
write F (t) for F ⊗OX(tHX). If the coordinate ring of X is Cohen-Macaulay,
then X is said to be arithmetically Cohen-Macaulay (ACM). If n > 0, then
X is ACM if and only if Hk(Pm, IX,Pm(t)) = 0 for any integer t and for any
0 < k ≤ n. A locally free sheaf F on an ACM variety X is called ACM
(arithmetically Cohen-Macaulay) if it has no intermediate cohomology, i.e.
if Hk(X,F (t)) = 0 for all integer t and for any 0 < k < n. The corresponding
module over the coordinate ring of X is thus a maximal Cohen-Macaulay
module. For more details see e.g. [CDH05].

2.1.3. Hilbert schemes. Given a coherent sheaf F on X, we write F (t) for
F ⊗OX(tHX), we denote by p(F, t) the Hilbert polynomial χ(F (t)) of the
sheaf F . Given a numerical polynomial p(t), we let Hilbp(t)(X) be the Hilbert
scheme of closed subschemes of X with Hilbert polynomial p(t). In case p(t)
has degree one, we let H g

d (X) be the union of irreducible components of
Hilb1−g+dt(X) containing integral curves of degree d and arithmetic genus
g. Both H g

d (X) and Hilbp(t)(X) are projective schemes.

2.1.4. Chern classes. The Chern classes ck(F ) are defined for any coherent
sheaf F on X, and actually for any object of Db(X), and take values in
Hk,k(X) (see for instance [Căl05]). The degree of a coherent sheaf F is
defined as deg(c1(F )). In the sequel, the Chern classes will be denoted by
integers as soon as Hk,k(X) has dimension 1 and the choice of a generator
is clear. The Chern polynomial of a coherent sheaf F on X is defined as
cF (t) = 1 + c1(F )t+ . . .+ cn(F )tn. Let Z be an integral subscheme of X, of
codimension m ≥ 1, denote by [Z] its fundamental class in Hm,m(X). We
recall that when a sheaf T is supported at Z, and has rank r at a generic
point of Z, then we have ck(T ) = 0 for 1 ≤ k ≤ m− 1 and:

(2.1) cm(T ) = (−1)m−1r[Z].

If Z is not integral, a similar formula holds by taking the sum over all
integral components of minimal codimension appearing in the support of T ,
weighted by their multiplicity.

2.2. Torsion-free and reflexive sheaves. Given a coherent sheaf F on
X, we denote by F ∗ = HomX(F,OX) the dual of F . Recall that a coherent
sheaf F on X is reflexive if the natural map F → F ∗∗ of F to its double
dual is an isomorphism. Any locally free sheaf is reflexive, and any reflexive
sheaf is torsion-free. Recall that a coherent sheaf F on X is reflexive if and
only if it can be included into a locally free sheaf E with E/F torsion-free,
see [Har80, Proposition 1.1]. Moreover, by [Har80, Proposition 1.9], any
reflexive rank-1 sheaf is invertible (recall that X is smooth and irreducible).
Finally, we will use a straightforward generalization of [Har80, Proposition
2.6] which implies that the third Chern class c3(F ) of a rank 2 reflexive
sheaf F on a smooth projective threefold satisfies c3(F ) ≥ 0, with equality
attained iff F is locally free. We will need the following simple lemma.

Lemma 2.1. Let F be a vector bundle on X and F be a torsion-free sheaf
such that c1(F ) = c1(F) and rk(F ) = rk(F). Then, any injective map
F → F is an isomorphism.
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Proof. We have the exact sequence:

0→ F → F → T → 0

where the quotient T is a torsion sheaf with c1(T ) = 0. Assume T 6= 0.
Note that E xtkX(T, F ) ∼= E xtkX(T,OX) ⊗ F = 0 for k = 0, 1, because T is
supported in codimension at least 2, since c1(T ) = 0. Then from the spectral
sequence:

Ep,q2 = Hp(X,E xtqX(T,OX)) =⇒ Extp+qX (T,OX),

we get Ext1
X(T, F ) = 0. This implies F ∼= F ⊕ T , which is a contradiction

because F is torsion-free. �

2.3. Summary on semistable vector bundles and sheaves. Let us
now recall a few well-known facts about semi-stable sheaves on projective
varieties. We refer to the book [HL97] for a more detailed account of these
notions. Stability depends on the choice of an ample divisor HX , so we will
deal with polarized manifolds from now on. We recall that a torsion-free
coherent sheaf F on X is (Gieseker) semi-stable if for any coherent subsheaf
E, with rk(E) < rk(F ), one has p(E, t)/ rk(E) ≤ p(F, t)/ rk(F ) for t � 0.
The sheaf F is called stable if the inequality above is strict for all E and
t � 0. A semi-stable sheaf is called poly-stable if it is the direct sum of
stable sheaves of the same slope.

The slope of a torsion-free sheaf F 6= 0 is defined as µ(F ) = deg(F )/ rk(F ).
The normalized twist Fnorm of F is set to be the unique sheaf F (t) with
−1 < µ(F (t)) ≤ 0. We recall that a torsion-free coherent sheaf F is µ-
semi-stable if for any coherent subsheaf E, with rk(E) < rk(F ), one has
µ(E) ≤ µ(F ). The sheaf F is called µ-stable if the above inequality is strict
for all E. We recall that the discriminant of a sheaf F is:

∆(F ) = 2rc2(F )− (r − 1)c1(F )2.

Bogomolov’s inequality, see for instance [HL97, Theorem 3.4.1], states that
if F is µ-semi-stable, then we have:

∆(F ) ·Hn−2
X ≥ 0.

Another useful tool is Hoppe’s criterion, see [Hop84, Lemma 2.6], or
[AO94, Theorem 1.2]. It says that, if the line bundle HX is very ample
and generates Pic(X), and F is a vector bundle on X of rank r, we have:
(2.2)
if H0(X, (∧pF )norm) = 0, for all 0 < p < r, then the bundle F is µ-stable.

We introduce here some notation concerning moduli spaces. Recall that
two semi-stable sheaves are S-equivalent if the direct sum of all successive
quotients associated with their Jordan-Hölder filtrations are isomorphic. We
denote by MX(r, c1, . . . , cn) the moduli space of S-equivalence classes of rank
r torsion-free semi-stable sheaves on X with Chern classes c1, . . . , cn. We
will drop the values of the classes ck from k0 on when they are zero from k0

on. The class in MX(r, c1, . . . , cn) of a given sheaf F will be denoted again
by F .
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2.4. Basic notions on prime Fano threefolds and K3 surfaces. Let
now X be a smooth projective variety of dimension 3. Recall that X is called
Fano if its anticanonical divisor class −KX is ample. A Fano threefold X is
prime if its Picard group is generated by the class of KX . These varieties
are classified up to deformation, see for instance [IP99, Chapter IV]. The
number of deformation classes is 10. Each class is characterized by the
genus, which is the integer g such that deg(X) = −K3

X = 2 g − 2. Recall
that the genus g of a prime Fano threefold satisfies 2 ≤ g ≤ 10 or g = 12.

If X is a prime Fano threefold of genus g, the Hilbert scheme H 0
1 (X) of

lines contained in X is a scheme of pure dimension 1. The threefold X is said
to be exotic if the Hilbert scheme H 0

1 (X) contains a component which is
non-reduced at any point. It turns out that no threefold of genus 9 is exotic,
see [GLN06]. In particular the normal bundle of a general line L ⊂ X splits
as OL ⊕ OL(−1). It is well-known that, if X is general, then the scheme
H 0

1 (X) is a smooth irreducible curve.

Remark that the cohomology groups Hk,k(X) of a prime Fano threefold
X of genus g are generated by the divisor class HX (for k = 1), the class
LX of a line contained in X (for k = 2), the class PX of a closed point
of X (for k = 3). Hence we will denote the Chern classes of a sheaf on
X by the integral multiple of the corresponding generator. Recall that
H2
X = (2 g − 2)LX .

We will use the geometry of lines and conics contained in X. So let us
note that, given a line L and a conic C contained in X, the Chern classes
of OL and OC satisfy:

c1(OL(t)) = 0, c2(OL(t)) = −1, c3(OL(t)) = 1 + 2t,

c1(OC(t)) = 0, c2(OC(t)) = −2, c3(OC(t)) = 4t,

where the first and the second Chern classes are given by (2.1) and the third
Chern classes can be computed by Hirzebruch-Riemann-Roch (we will write
down the formula explicitly for g = 9, see (3.11) next; for the formula for
any genus see [BF08, (2.11)]).

A smooth projective surface S is a K3 surface if it has trivial canonical
bundle and irregularity zero. We recall by [HL97, Part II, Chapter 6] that,
given a stable sheaf F of rank r on a K3 surface S polarized by HS , the
dimension at F of the moduli space MS(r, c1, c2) is:

∆(F )− 2 (r2 − 1).

3. Geometry of prime Fano threefolds of genus 9

From now on we will denote by X a smooth prime Fano threefold of
genus 9. We will collect in this section some fundamental remarks on these
threefolds.

3.1. Tautological bundle of rank 3. Most of the basic features of a Fano
threefolds X of genus 9 come from Sp(3)-geometry, and can be encoded in
the properties of a tautological bundle of rank 3. For a detailed account on
these varieties, we refer to the papers [Muk88,Muk89, Ili03, IR05].
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By a result of Mukai, the threefold X is isomorphic to a 3-codimensional
linear section of the Lagrangian Grassmannian Σ of 3-dimensional subspaces
of a 6-dimensional vector space V which are isotropic with respect to a skew-
symmetric 2-form ω. The manifold Σ is homogeneous for the complex Lie
group Sp(3), which acts on V preserving ω, and is equivariantly embedded

in P13 = P(ker(∧2V
ω→ C)). In other words, the manifold Σ, which is a

Hermitian symmetric space, can be written as Sp(3)/P(α3), where P(α3) is
the parabolic subgroup associated with the longest root of the Lie algebra
of Sp(3). The Lie algebra of this group has dimension 21 and its Dynkin
diagram is of type C3.

The divisor class HX embeds X in P10 as an ACM variety. Indeed, by
[IR05, Section 2.3], the variety Σ is ACM in P13, and this implies that the
linear section X is ACM too. A very general hyperplane section S of X is a
smooth K3 surface polarized by the restriction HS of HX to S, with Picard
number 1 and sectional genus 9, and S is an ACM subvariety of P9.

The manifold Σ is equipped with a tautological homogeneous rank 3 sub-
bundle U , and we still denote by U its restriction to X. The tautological
exact sequence on X, obtained as restriction from Σ, reads:

(3.1) 0→ U → V ⊗OX → U∗ → 0.

Let us review the properties of the vector bundle U . Its Chern classes
satisfy c1(U) = −1, c2(U) = 8, c3(U) = −2. The bundle U is exceptional
(see e.g. [Kuz06, Section 6.3]). We have the following lemma.

Lemma 3.1. The bundle U is stable and ACM. The same is true for its
restriction US to a smooth hyperplane section surface S with Pic(S) = 〈HS〉.

Proof. Applying Borel-Bott-Weil’s theorem (see e.g. [Wey03]) on Σ, we ob-
tain:

(3.2) Hk(Σ,U(−t)) = 0, for

 all k and 0 ≤ t ≤ 3,
k 6= 0 and t ≤ −1,
k 6= 6 and t ≥ 4.

Consider the Koszul complex of X in Σ:

0→ OΣ(−3)→ OΣ(−2)3 → OΣ(−1)3 → OΣ → OX → 0.

Tensoring it with U , and using (3.2), it easily follows that U is ACM on X.
Since ∧2U ∼= U∗(−1), by Serre duality we get H0(X,∧2U) = 0, so U is stable
by Hoppe’s criterion, see (2.2).

To check the statement on S, consider the defining exact sequence:

(3.3) 0→ OX(−1)→ OX → OS → 0.

Since U is ACM on X, tensoring (3.3) by U(−t), and using H0(X,U) = 0,
we get:

H1(S,US(−t)) = 0, for t ≥ 0, and H0(S,US) = 0.

Tensoring (3.3) by U∗(−t), recalling that we have proved H0(X,U∗(−1)) = 0,
and that U is ACM on X, making use of Serre duality we obtain:

H1(S,US(t)) = 0, for t ≥ 1, and H0(S,U∗S(−1)) = 0.
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This proves that the bundle US is ACM and that it is stable again by Hoppe’s
criterion. �

Remark 3.2. Given a line L contained in X, the bundle U∗ splits over
L as O2

L ⊕ OL(1). Indeed, it must split (by Grothendieck’s theorem) as
⊕i=1,2,3OL(ai) where we order the ai’s to that a1 ≤ a2 ≤ a3. But U∗ is
globally generated, so ai ≥ 0; and c1(U∗) = 1 implies a1 + a2 + a3 = 1, so
a1 = a2 = 0 and a3 = 1.

3.2. Universal bundles and the decomposition of the derived cat-
egory. Here we review the structure of the derived category of a smooth
prime Fano threefold X of genus 9, in terms of the semiorthogonal decom-
position provided by [Kuz06]. We will interpret this decomposition in terms
of the universal vector bundle of the moduli space MX(2, 1, 6).

3.2.1. Semiorthogonal decomposition in terms of moduli space of bundles. In
view of the results of [IR05], and recalling [BF11, Lemma 3.4], the moduli
space MX(2, 1, 6) is fine and isomorphic to a smooth plane quartic curve Γ.
Further, the universal sheaf E for this moduli space is locally free by [BF08,
Proposition 3.5]. It is defined onX×Γ, and we denote by p and q respectively
the projections to X and Γ. The curve Γ can be obtained as the intersection
of the Sp(3)-invariant quartic in P̌13 projectively dual to Σ, with the P2

spanned by the web of linear forms vanishing on X. This curve is also called
the homologically projectively dual curve to X. Indeed, by Kuznetsov’s
theorem, see [Kuz06, Section 6.3]), we have a semiorthogonal decomposition:

(3.4) Db(X) = 〈OX ,U∗,Φ(Db(Γ))〉,

where Φ is the integral functor associated with a sheaf F on X×Γ, flat over
Γ, and the symbol 〈−〉 denotes “generated” i.e. the minimal full triangulated
subcategory containing a given family of Db(X). We show now that the
sheaf F is given by the moduli functor on Γ = MX(2, 1, 6).

Lemma 3.3. The sheaf F is isomorphic to E , up to twist by an invertible
sheaf.

Proof. Given a point y ∈ Γ, we denote by Fy the sheaf F restricted to
X ×{y}. We claim that, by [Kuz06, Appendix A], Fy fits into a long exact
sequence:

(3.5) 0→ OX → U∗ → Fy → OZ → 0,

where Z is a conic contained in X. In order to see this, we first inspect
[Kuz06, Proposition A.9] (observe that Fy is denoted by C in that paper).
We observe that Z is obtained as the intersection of a sub-Grassmannian
LGr(2, 4) ⊂ Σ of 2-dimensional Lagrangian subspaces in a 4-subspace of V ,
with a codimension-2 linear section of Σ containing X. Then, we note that
LGr(2, 4) is a smooth quadric threefold, so that, since X does not contain
planes or 2-dimensional quadrics, Z must be a conic.

We prove now that Fy is torsion-free. Note first that, for all y ∈ Γ, the
sheaf Fy is simple by Bondal-Orlov’s criterion, [BO95], since the functor Φ
is fully faithful. Hence Fy is indecomposable. Let now I be the image of
the middle map in (3.5), and recall from [Kuz06, Proposition A.9] that I is
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torsion-free. Let T be the torsion part of Fy and assume by contradiction
that T 6= 0. Then (3.5) induces:

(3.6) 0→ I → Fy/T → OD → 0,

where D ⊂ C is defined by OD = OC/T . So D is either a line in X or a
finite set of points. In both cases, applying HomX(−,OD(−1)) to

0→ OX → U∗ → I → 0,

we easily compute Ext2
X(I,OD(−1)) = 0. Hence, by Serre duality we obtain

Ext1
X(OD, I) = 0, so by (3.6) we get Fy/T ∼= I ⊕ OD. We deduce that I is

a direct summand of Fy, contradicting that Fy is simple.
Now, we compute c1(OZ) = 0, c2(OZ) = −2, c3(OZ) = 0, and so c1(Fy) =

1, c2(Fy) = 6, c3(Fy) = 0. Further, we easily check that Fy is a stable
sheaf, i.e. Fy sits in MX(2, 1, 6). Note that, by [BF08, Proposition 3.5], Fy

must be a vector bundle.
Since E is a universal vector bundle for the fine moduli space Γ =

MX(2, 1, 6), we have thus that F is the twist by a line bundle on Γ of a
pull-back of E via a map f : Γ→ Γ. Finally, we show that f is not constant
(hence f is an isomorphism and we are done). Indeed, again by Bondal-
Orlov’s criterion we have ExtkX(Fy,Fz) = 0, for all k if y 6= z ∈ Γ. But if f
was constant, we would have homX(Fy,Fz) = 1, for any y, z ∈ Γ. �

Since the universal sheaf E is defined up to a line bundle, we may now
assume F ∼= E .

3.2.2. An explicit formulation of the semiorthogonal decomposition. Let us
write down explicitly Kuznetsov’s semiorthogonal decomposition. The func-
tor Φ is defined as follows:

Φ : Db(Γ)→ Db(X), Φ(−) = Rp∗(q
∗(−)⊗E ).

Recall that Φ is fully faithful and the corresponding right and left adjoint
functors Φ! and Φ∗ are defined by the formulas:

Φ! : Db(X)→ Db(Γ), Φ!(−) = Rq∗(p
∗(−)⊗E ∗(ωΓ))[1],(3.7)

Φ∗ : Db(X)→ Db(Γ), Φ∗(−) = Rq∗(p
∗(−)⊗E ∗(−HX))[3].(3.8)

Given a sheaf F over X, in view of [Gor90], the semiorthogonal decom-
position (3.4) gives a functorial exact triangle:

(3.9) Φ(Φ!(F ))→ F → Ψ(Ψ∗(F )),

where Ψ is the inclusion of the subcategory 〈OX ,U∗〉 in Db(X) and Ψ∗ is
the left adjoint functor to Ψ. The k-th term of the complex Ψ(Ψ∗(F )) can
be written as follows:

(3.10) (Ψ(Ψ∗(F )))k ∼= Ext−kX (F,OX)∗⊗OX ⊕ Ext1−k
X (F,U)∗⊗U∗.
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3.2.3. Grothendieck Riemann-Roch’s formula. Consider a coherent sheaf F
of (generic) rank r on X × Γ and with Chern classes ci, dj lying in:

ci ∈ Hi,i(X)⊗H0,0(Γ), dj ∈ Hj−1,j−1(X)⊗H1,1(Γ).

We let ci, dj ∈ Z by considering the integral multiples of the natural positive
generator of the trace over Z of each of the cohomology group above, and:

ξ ∈ H2,1(X)⊗H0,1(Γ)⊕H1,2(X)⊗H1,0(Γ),

with ξ2 = α ∈ Z. Then Hirzebruch-Riemann-Roch applied to the sheaf F
on X × Γ reads:

χ(F ) =8
3c

3
1d1 − 8

3c
2
1d2 − 1

3c1c2d1 + 1
6c1d3 + 1

6c2d2 + 1
24c3d1 − 1

6d4−
−16

3 c
3
1 + 4c2

1d1 + c1c2 − 4c1d2 − 1
4c2d1 − 1

4c3 + 1
4d3−

−8c2
1 + 10

3 c1d1 + c2 − 10
3 d2 − 20

3 c1 + d1 + 1
12α− 2r.

By Grothendieck-Riemann-Roch we also have:

χ(F ) =

3∑
i=0

(−1)iχ(Rip∗(F )) =

1∑
j=0

(−1)jχ(Rjq∗(F )).

It will be handy to specialize this formula to a coherent sheaf F on X of
rank r, with Chern classes c1, c2, c3 (this is actually the Hirzebruch-Riemann-
Roch formula for a sheaf on X):

(3.11) χ(F ) = r + 10
3 c1 + 4 c2

1 − 1
2c2 + 8

3 c
3
1 − 1

2 c1 c2 + 1
2 c3.

Let us now go back to our universal bundle E . We have the following:

c1(E ) = HX +N, c2(E ) = 6LX +HXM + η,

where N and M are divisor classes on Γ, and η sits in H3(X,C)⊗H1(Γ,C).
The formulas above help obtaining the following lemma:

Lemma 3.4. We have η2 = 6 and deg(N) = 2 deg(M) − 1. Since the
universal bundle E is determined up to twisting by the pull-back of a line
bundle on Γ, we may adopt the convention:

(3.12) deg(N) = deg(Ex) = 5.

Proof. From the definition of Φ, it follows that Φ(Oy) ∼= Ey. Since the

functor Φ is fully faithful, we easily obtain also the isomorphism Φ!(Ey) ∼=
Oy. Since OX lies in Φ(Db(Γ))⊥, we have:

Φ!(OX) = 0.

Plugging the equations χ(Φ!(OX)) = 0 and χ(Φ!(Ey)) = 1 into
Grothendieck-Riemann-Roch’s formula, we get our claim. �

3.2.4. Mutation of the tautological bundle. One can play with mutations to
obtain different semiorthogonal decompositions. For instance the vector
bundle U is given by the left mutation of U∗ through OX , in view of (3.1),
more precisely LOX

U∗ ∼= U [1].

Lemma 3.5. We have the natural isomorphisms:

H0(Φ(Φ∗(U∗))) ∼= U∗, H1(Φ(Φ∗(U∗))) ∼= U(1).
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Proof. We first replace the semiorthogonal decomposition (3.4) by
〈U ,OX ,Φ(Db(Γ)〉 by left-mutating U∗ through OX . Let S : F 7→
F ⊗ OX(−1)[3] be the Serre functor of Db(X). It is well-known that,
right-mutating U through OX and Φ(Db(Γ)), we must obtain S−1(U) i.e.
U(1)[−3] (see [Bon89]). This gives the semiorthogonal decomposition:

Db(X) = 〈OX ,Φ(Db(Γ),U(1))〉,
Now, we have ROX

U ∼= U∗[−1], so RΦ(Db(Γ))U∗[−1] ∼= U(1)[−3]. On the
other hand, we have the mutation triangle:

(3.13) RΦ(Db(Γ))U∗ → U∗ → Φ(Φ∗(U∗)).
Taking cohomology of the above triangle proves the lemma, and (3.13) be-
comes:

(3.14) U(1)[−2]→ U∗ → Φ(Φ∗(U∗)).
�

3.3. Conics contained in X. In this section we review some facts concern-
ing the geometry of conics contained in X. In Proposition 3.10 we recover
Iliev’s description of their Hilbert scheme, see [Ili03]. We outline a different
proof, which holds for any smooth prime Fano threefolds of genus 9. We
first look at the vanishing locus of sections of U∗.

Lemma 3.6. Let σ ∈ H0(X,U∗) be a non-zero global section of U∗. Then
σ vanishes either along a conic, or a line, or a pair of points. Further,
for σ′ ∈ H0(X,U∗), not proportional to σ, the locus where σ and σ′ vanish
simultaneously is a line, or a point, or the empty set.

Proof. Recall that X is cut in Σ ⊂ P13 by a 3-codimensional linear sec-
tion P10 ⊂ P13. From Lemma 3.1 we see that H0(X,U∗) is isomorphic to
H0(Σ,U∗), so σ and σ′ lift to sections σ̃ and σ̃′ on Σ. The vanishing locus of
σ and of (σ, σ′) in X are given as the intersection of P10 with the vanishing
locus of σ̃ and of (σ̃, σ̃′) in Σ.

Now, the vanishing locus of σ̃ is a sub-Grassmannian of 2-dimensional
Lagrangian subspaces in a 4-subspace of V , i.e. a quadric threefold Q in
Σ. We have already observed that X contains no 2-dimensional quadrics
or planes, so the locus in X obtained cutting Q with P10 must be a pair of
points (if the dimension is the expected one) or a conic, or a line.

Further, the locus in Σ where σ̃ and σ̃′ vanish together is a sub-
Grassmannian of 1-dimensional Lagrangian subspaces in a 2-subspace of
V , i.e. a P1 ⊂ Σ. Cutting this P1 with the P10 defining X we obtain either
a line, or a point, or the empty set. �

Lemma 3.7. Let C be any conic contained in X. Then we have:

h0(X,U ⊗OC) = 1, h1(X,U ⊗OC) = 0,(3.15)

homX(U , IC) = 1, extkX(U , IC) = 0, for k 6= 0(3.16)

Proof. By Riemann-Roch we have χ(U∗⊗IC) = 1 and one can easily prove
ExtkX(U , IC) = 0, for k ≥ 2. So, to prove (3.16), it only remains to show
that homX(U∗⊗IC) ≤ 1. But, assuming homX(U∗⊗IC) ≥ 2, we have that
C is (scheme theoretically) contained in the simultaneous zero locus of a
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pencil of global sections of U∗, which is, by Lemma 3.6, either a line or a
point or the empty set. This is nonsense, and (3.16) is proved.

Now, in order to prove (3.15), we first apply HomX(−, IC) to (3.1) and we
find ext1

X(U∗, IC) = 1 and extkX(U∗, IC) = 0 for all k 6= 0. Since Hk(X,U) =
0 for all k, (3.15) follows. �

Lemma 3.8. Let E be a sheaf in MX(2, 1, 6). Let α be any non-zero element
in HomX(U∗, E). Then α gives the long exact sequence:

(3.17) 0→ OX
σ−→ U∗ α−→ E → OC → 0,

where C is a conic contained in X and σ is a global section of U∗.

Proof. Let I be the image of the non-zero map α : U∗ → E. Recall by
Lemma 3.1 that U is stable. Thus, by stability of E we get rk(ker(α)) = 1
and c1(ker(α)) = 0. Since ker(α) is reflexive, it must be invertible and we
get an exact sequence of the form:

(3.18) 0→ OX → U∗ → E → T → 0,

where T = cok(α) is a torsion sheaf.
We have c1(T ) = 0, c2(T ) = −2, c3(T ) = 0, so the support of T is a

non-empty subscheme of codimension 2 in X. Recall that E is locally free
(see [BF08, Proposition 3.5]), so that dualizing (3.18) we get:

(3.19) 0→ E∗ → U → OX → E xt2X(T,OX)→ 0,

and the vanishing E xtkX(T,OX) = 0 for k 6= 2. This says that

E xt2X(T,OX) ∼= OC , where C is the zero-locus of σ ∈ H0(X,U∗). So, by
Lemma 3.6, we have that C is either a conic in X or a line in X or a pair of
points of X. But the last two cases are impossible, since we may compute
from (3.19) the value c2(E xt2X(T,OX)) = 2. Note that, if y ∈ Γ is the point
corresponding to the sheaf E = Ey, we can write (3.19) as:

(3.20) 0→ E ∗y
α>−−→ U σ>−−→ IC → 0.

Dualizing again (3.19) we must get back (3.18), so that T =
E xt2X(OC ,OX) ∼= OC , and the lemma is proved. Note that the exact se-
quence (3.17) is precisely (3.5). �

Lemma 3.9. Let E = Ey be a sheaf in MX(2, 1, 6). Then we have:

homX(U∗, E) = 2,

ExtkX(U∗, E) = 0, for all k ≥ 1,

ExtkX(U , E∗) = ExtkX(E,U∗) = 0, for all k.

Proof. Tensor (3.17) by U and recall that Hk(X,U) = 0 for all k. The
bundle U is exceptional, so h0(X,U ⊗U∗) = 1 and Hk(X,U ⊗U∗) = 0 for all
k ≥ 1. By (3.15), we conclude that h0(X,U ⊗E) = homX(U∗, E) = 2 and
Hk(X,U ⊗E) = extkX(U∗, E) = 0 for all k ≥ 1.

Since Γ = MX(2, 1, 6), we have E ∼= Ey ∼= Φ(Oy) for some y ∈ Γ. Then
we have:

ExtkX(U ,E ∗y ) ∼= ExtkX(Ey,U∗) ∼= ExtkX(Φ(Oy),U∗),
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and the last term vanishes, for all k, since Φ(Db(Γ)) is left-orthogonal to
U∗. �

Proposition 3.10 (Iliev). Let X be a smooth prime Fano threefold of genus
9. Then the sheaf V = q∗(p

∗(U)⊗E ) is a rank 2 vector bundle on Γ, and
we have a natural isomorphism:

(3.21) V∗ ∼= Φ∗(U∗).
The Hilbert scheme H 0

2 (X) is isomorphic to the projective bundle P(V)
over Γ. In particular, H 0

2 (X) is a smooth irreducible surface.

Proof. In view of Lemma 3.9, we have Rkq∗(p
∗(U)⊗E ) = 0, for k ≥ 1, and

V is a locally free sheaf on Γ of rank h0(X,U ⊗Ey) = 2.
By an instance of Grothendieck duality, see [Har66, Chapter III], given a

sheaf P on X × Γ, we have:

(3.22) D(Rq∗(P)) ∼= Rq∗(OX(−1)⊗D(P))[3],

and the isomorphism is functorial. Setting P = p∗(U)⊗E in (3.22), we get
(3.21).

Consider now an element ξ of the projective bundle P(V). It is uniquely
represented by a pair ([α], y), where y is a point of Γ, and [α] is an element
of P(H0(X,U ⊗Ey)). Setting E = Ey in Lemma 3.8, the morphism α gives
(3.20), thus defining a conic C associated with α. This defines an algebraic
map ϑ : P(V)→H 0

2 (X).
To conclude the proof, let us provide an inverse to ϑ. Let C be a conic

contained in X. By (3.16), there exists a unique (up to scalar) morphism
δ : U → IC . The composition of δ with the embedding of IC → OX provides
a non-zero global section σ of U∗ whose zero locus contains C. But in view of
Lemma 3.6 this zero locus is thus precisely C, so that δ is surjective. Then,
setting K = ker(δ), it is easy to see that K(1) is a sheaf in MX(2, 1, 6), so
that K(1) ∼= Ey for some y ∈ Γ. We then associate with the conic C the
point ξ = ([α], y) ∈ P(V), where α is the transpose of the inclusion of K in
U . This provides an algebraic inverse to ϑ and completes the proof. �

Lemma 3.11. We have a natural isomorphism Φ!(U(1))[−1] ∼= Φ∗(U∗). In
particular, we get det(V∗) ∼= ωΓ(−N), where c1(E ) = HX +N .

Proof. We apply the functor Φ! to the triangle (3.14). Since Φ!(U∗) = 0 by
semi-orthogonality of (3.4), we obtain:

Φ!(U(1))[−1] ∼= Φ!(Φ(Φ∗(U∗))) ∼= Φ∗(U∗),
where the last equivalence follows from the fully faithfulness of Φ. The first
statement is thus proved.

In view of the previous proposition, we have V ∼= Φ∗(U∗)∗. Since the
bundle E has rank two and c1(E ) = HX +N we have E ∗ ∼= E (−HX −N).
Plugging this in the definition of Φ!(U(1)) and recalling the definition of
V = q∗(p

∗(U)⊗E ), we have:

V ∼= Φ!(U(1))⊗ω∗Γ(N)[−1] ∼= V∗⊗ω∗Γ(N).

Since V has rank 2, we have V ∼= V∗⊗det(V), and the second statement of
the lemma follows. �
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Remark 3.12. Recall that deg(N) = 5 by assumption (3.12). Hence from
Lemma 3.11 it follows that deg(V) = 1. In view of the previous results, we
can identify V with a twist of the stable bundle of rank 2 of degree 3, defined
by Iliev in [Ili03, Section 5]. Let KΓ = c1(ωΓ) and recall that by Mukai’s
theorem, [Muk01], X is isomorphic to the type II Brill-Noether locus:

MΓ(2,KΓ, 3V) = {F ∈ MΓ(2, c1(V) +KΓ) |h0(Γ,F ⊗V∗) ≥ 3}.

Therefore, the bundle E is universal also for the moduli space X ∼=
MΓ(2,KΓ, 3V).

In fact, the moduli space of smooth prime Fano threefolds of genus 9 can
be identified with the space of pairs (Γ,V) where Γ is a smooth plane quartic
and V is a vector bundle of rank 2 of odd degree and such that any section
of P(V) has self-intersection at least 3.

3.4. Lines contained in X. Here we focus on lines contained in X. We
will describe their Hilbert scheme as a certain Brill-Noether locus of the
Picard variety Pic2(Γ) of line bundles of degree 2 on Γ. We start with the
following preliminary lemma:

Lemma 3.13. Let L be a line bundle in Pic2(Γ) such that h0(Γ,V ⊗L) ≥ 2.
Then Φ(L) is a stable vector bundle of rank 5 and degree 2.

Proof. Given L as above, we consider a 2-dimensional subspace Λ ⊂
H0(Γ,V ⊗L), and the natural evaluation of sections:

β : V∗ → L⊗ Λ∗.

First of all we prove that det(β) 6= 0. Indeed, assume det(β) = 0, and
note that the image Im(β) would be a line bundle admitting 2 linearly
independent morphisms to L, by definition of the evaluation map. Then,
since Γ is not rational, we have deg(L)−deg(Im(β)) ≥ 2, so deg(Im(β)) ≤ 0.
But, by a result of Mukai (see [Muk01, Theorem 9.1]), we know that any
section of the P1-bundle P(V) has self-intersection number at least 3. This
implies that the degree of any line bundle which is quotient of V∗ is at least
1, so deg(Im(β)) ≥ 1, a contradiction.

Now since det(β) 6= 0, we have the following exact sequence:

(3.23) 0→ V∗ j−→ L⊗ Λ∗
h−→ Oy1 ⊕ . . .⊕ Oy5 → 0,

where y1, . . . , y5 are points of Γ. Applying the functor Φ to (3.23) and using
(3.21) and Lemma 3.5, we obtain:

(3.24) 0→ U∗ i−→ Φ(L)⊗ Λ∗
g→ Ey1 ⊕ . . .⊕ Ey5 → U(1)→ 0.

It is easy to compute deg(Φ(L)) = 2 and rk(Φ(L)) = 5. Note also that Φ(L)
is indecomposable. Indeed, it is simple by fully faithfulness of Φ, because
HomX(Φ(L),Φ(L)) ∼= HomΓ(L,L) ∼= C. Applying Φ∗ to (3.24) we get:

Φ∗(g) = h, Φ∗(i) = j.

Now we want to prove that Φ(L)⊗Λ∗ ∼= Φ(L)2 is semi-stable and this will
imply that Φ(L) is stable, because its degree and rank are co-prime. Assume
the contrary, and let Q be a torsion-free quotient of Φ(L)2 with rk(Q) ≤ 9
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and µ(Q) < 2
5 . Let K be the kernel of the projection Φ(L)2 → Q. Clearly

we have µ(K) > 2
5 and rk(K) ≤ 9. We have thus the diagram:

(3.25) 0

��

0

��

0

��

0 // K ′ //

��

K //

��

K ′′ //

��

0

0 // U∗ //

��

Φ(L)2 //

��

Im(g) //

��

0

0 // Q′ //

��

Q //

��

Q′′ //

��

0

0 0 0

Now since U∗ is stable we have µ(K ′) ≤ 1
3 and since Im(g) is included in

Ey1⊕. . .⊕Ey5 , which is poly-stable, we have either µ(K ′′) < 1
2 , or µ(K ′′) = 1

2
and (up to reordering of the yi’s) K

′′ ∼= Ey1 ⊕ . . .⊕ Eyk for some 1 ≤ k ≤ 4.
Imposing all these numerical conditions we easily exclude the cases rk(K) =
3, 5, 9. Hence we are lead to deal with the following cases:

i) µ(K) = 1
2 . In this case K ′ = 0, µ(K ′′) = 1

2 , and so, up to reordering
of the yi’s, we have K ∼= K ′′ ∼= Ey1 ⊕ . . . ⊕ Eyk for some 1 ≤ k ≤ 3.
Then we have a non-zero map Ey1 → Φ(L)2, and since Φ is fully faithful
and Ey ∼= Φ(Oy), this amounts to a non-zero map Oy1 → L2, which is
absurd since L is torsion-free.

ii) µ(K) = 3
7 and K ′ = 0. In this case K ∼= K ′′, so the third line in the

diagram is: 0 → U∗ → Q → Q′′ → 0, where c1(Q) = c1(U∗) = 1 and
rk(Q) = rk(U∗) = 3. Recall that Q is torsion-free by assumption. Hence
we can apply Lemma 2.1 and we get Q′′ = 0. Then i splits, hence so
does j, for Φ∗(i) = j. This is absurd.

iii) µ(K) = 3
7 and rk(K ′) = 1. This time rk(K ′′) = 6, c1(K ′′) = 3 and, up

to reordering of the yi’s, we have K ′′ ∼= Ey1 ⊕ Ey2 ⊕ Ey3 and c1(K ′) =
0. Looking at the first column in the above diagram, we see that K ′

is reflexive of rank 1, so K ′ ∼= OX . But for all i = 1, 2, 3, we have
Ext1

X(Eyi ,OX) = 0, because each Eyi is ACM (or because Φ(Db(Γ)) is
left-orthogonal to OX). So the first row of (3.25) splits. As in (i), we
would then get a non-zero map Eyi → Φ(L)2, which is absurd.

iv) µ(K) = 3
7 and rk(K ′) = 3. In this case we must have c1(K ′) = 1 and

µ(K ′′) = 1
2 . Then it follows again that K ′′ is a direct sum of some of the

Eyi ’s. On the other hand, since µ(K ′) = 1
3 , we get K ′ ∼= U∗ by stability

of U∗. By Lemma 3.9 we know that Ext1
X(Eyi ,U∗) = 0, so again the

first row of (3.25) splits, and we are lead to a contradiction.

�

Proposition 3.14. Let L be a line contained in X. Then Φ!(OL(−1)) is a
line bundle of degree 2 and we have a functorial exact sequence:

(3.26) 0→ OX → AL⊗U∗
ζL−→ Φ(Φ!(OL(−1)))→ OL(−1)→ 0,
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where AL = H1(L,U∗L(−2)) ∼= C2. Moreover, the map:

ψ : L 7→ Φ!(OL(−1))

gives an isomorphism of the Hilbert scheme H 0
1 (X) with the Brill-Noether

locus:

(3.27) W = {L ∈ Pic2(Γ) | h0(Γ,V ⊗L) ≥ 2}.

In fact, the last inequality must be an equality.

Proof. Recall that, for each y ∈ Γ, the sheaf Ey is a globally generated
bundle (by [BF11, Theorem 3.2]) with c1(Ey) = 1. Thus, it splits over L as

OL ⊕ OL(1). It easily follows that Φ!(OL(−1)) is a sheaf concentrated in
degree 0, having rank equal to h0(L,E ∗y ) = 1. By Grothendieck-Riemann-

Roch formula we compute deg(Φ!(OL(−1))) = 2.
To get (3.26), we use (3.9) and (3.10). We have thus to compute the

cohomology groups ExtkX(OL(−1),OX) and ExtkX(OL(−1),U). Note that
U∗ splits over L as O2

L⊕OL(1) by Remark 3.2. So, using Serre duality, we see

that ExtkX(OL(−1),OX) = ExtkX(OL(−1),U) = 0 for k 6= 2, while for k = 2
we have ext2

X(OL(−1),OX) = 1 and ext2
X(OL(−1),U) = 2. Setting AL =

H1(L,U∗L(−2)) ∼= Ext2
X(OL(−1),U)∗, we obtain the functorial resolution

(3.26) and dim(AL) = 2.
Set L = Φ!(OL(−1)), and recall the isomorphism (3.21). Applying the

functor HomX(U∗,−) to the long exact sequence (3.26), since U is excep-
tional, and both HomX(U∗,OX) and HomX(U∗,OL(−1)) vanish, we get the
natural isomorphisms:

HomΓ(V∗,L) ∼= HomΓ(Φ∗(U∗),L) ∼= HomX(U∗,Φ(L)) ∼= AL,

Ext1
Γ(V∗,L) ∼= Ext1

Γ(Φ∗(U∗),L) ∼= Ext1
X(U∗,Φ(L)) ∼= H1(L,U(−1)).

(3.28)

Therefore, the line bundle L lies in the locus defined by (3.27), and actu-
ally we have h0(Γ,V ⊗L) = 2. Moreover, up to multiplication by a non-zero
scalar, the morphism ζL coincides with the natural evaluation map eU∗,Φ(L).

Thus, the mapping L 7→ Φ!(OL(−1)) is injective, since OL(−1) can be re-
covered as cok(ζL).

Now in order to prove that ψ is an isomorphism, we will build the inverse
ψ−1 : W → H 0

1 (X). Given a line bundle L in W we know by Lemma 3.13
that Φ(L) is a stable vector bundle of rank 5 and degree 2. Choose now a
2-dimensional subspace Λ ⊂ H0(Γ,V ⊗L), and let e be the evaluation map
e : Λ⊗V∗ = Λ⊗Φ∗(U∗) → L. By adjunction, from this map we obtain
H0(Φ(e)) : Λ⊗U∗ → Φ(L), hence we deduce that H0(Φ(e)) 6= 0. Let
K and T be the kernel and the image of H0(Φ(e)), and write the exact
sequence:

(3.29) 0→ K → Λ⊗U∗ H
0(Φ(e))−−−−−−→ Φ(L)→ T → 0.

By poly-stability of Λ⊗U∗ and stability of Φ(L) (see Lemma 3.13), it easily
follows that rk(K) = 1 and c1(K) = 0. Moreover K is reflexive and hence
invertible. This means that K ∼= OX and T is a torsion sheaf with c1(T ) = 0,
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c2(T ) = −1, c3(T ) = −1. Dualizing (3.29) we get

0→ Φ(L)∗ → Λ∗⊗U → OX → E xt2X(T,OX)→ 0.

and E xtkX(T,OX) = 0 for k 6= 2. This says that E xt2X(T,OX) ∼= OC , where
C is the zero-locus of two independent global sections of U∗. So, by Lemma
3.6 and since c2(E xt2X(T,OX)) = −1, it follows that C = L must be a line
contained in X. Dualizing again we easily get T ∼= OL(−1).

This shows that (3.29) has the same form of (3.26), with L ∼= Φ!(OL(−1)).
It follows that h0(Γ,V ⊗L) = dim(AL) = 2. This proves the last assertion,
and also that Λ above is all of H0(Γ,V ⊗L). We define ψ−1(L) = [L] ∈H 0

1

and it is clear by the construction that ψ−1 is the inverse of ψ. �

Lemma 3.15. Given a line L contained in X, we have the triangle

(3.30) U∗ → Φ(Φ!(OL[−1]))→ OL[−1]

and the map OL 7→ Φ!(OL)[−1] is an isomorphism of H 0
1 (X) onto the

Brill-Noether locus:

W̃ = {M ∈ Pic1(Γ) | h0(Γ,V ⊗M) ≥ 1}

which is isomorphic to the locus W defined in (3.27). Further, for any

M∈ W̃ we have:

(3.31) H0(Φ(M)) ∼= U∗, H1(Φ(M)) ∼= OL,

for the unique line L ⊂ X such that Φ!(OL)[−1] ∼=M.

Proof. By Serre duality we have ExtkX(OL,OX) = 0 for all k, ext3
X(OL,U) =

1 and ExtkX(OL,U) = 0 for all k 6= 3, since by Remark 3.2 we know that
U∗ splits over L as O2

L ⊕ OL(1). Then by using (3.9) and (3.10), we get
Ψ(Ψ∗(OL)) ∼= U∗[2] and the triangle (3.30). In turn, this gives:

(3.32) Hk(Φ(Φ!(OL))) ∼=

 U
∗ if k = −1;

OL if k = 0;
0 if k 6= −1, 0.

Now, with any line bundle L ∈ W we associate the line bundle τ(L) :=
L∗ ⊗ ωΓ ⊗ detV∗. By Serre duality we have H1(Γ, τ(L) ⊗ V) ∼= H0(Γ,L ⊗
V)∗, since V∗ ⊗ detV ∼= V. Hence h1(Γ, τ(L) ⊗ V) = 2, because L ∈ W .
By Riemann-Roch we know that χ(τ(L) ⊗ V) = −1, hence it follows that

h0(Γ, τ(L) ⊗ V) = 1. Hence τ is a map from W to W̃ which is clearly an
isomorphism. Since we proved in Proposition 3.14 that h0(Γ,V ⊗L) = 2,
we obtain h0(Γ,V ⊗ τ(L)) = 1.

Recall that in Proposition 3.14 we have established an isomorphism
ψ : L 7→ Φ!(OL(−1)) from the Hilbert scheme H 0

1 (X) to the locus W .

Now τ ◦ ψ : H 0
1 (X) → W̃ is again an isomorphism and we want to show

that it coincides with Φ!(−)[−1]. Setting P = p∗(OL(−1)) ⊗ E ∗ ⊗ ωΓ in
Grothendieck duality formula (3.22), and recalling the definition of Φ!, we
have:

D(Φ!(OL(−1))) ∼= Rq∗(OX(−1)⊗D(p∗(OL(−1))⊗ E ∗ ⊗ ωΓ))[2],
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Recalling that E ∗ ∼= E (−HX − N) and det(V∗) ∼= ωΓ(−N), we have E ∗ ⊗
ωΓ
∼= E (−HX)⊗ detV∗. Since D(OL(−1))[2] ∼= OL we can conclude that:

D(Φ!(OL(−1)) ∼= Rq∗(p
∗(OL)⊗ E ∗ ⊗ detV) ∼= Φ!(OL)[−1]⊗ω∗Γ⊗detV∗.

This proves that τ ◦ ψ = Φ!(−)[−1] and so Φ!(−)[−1] is an isomorphism

of H 0
1 (X) onto W̃ . To check the last statement, we use that Φ!(−)[−1] is

an isomorphism, so for anyM∈ W̃ , there is a unique L ∈H 0
1 (X) such that

M∼= Φ!(OL)[−1]. For this line L, we already proved the desired statement
in (3.32). �

4. Stable sheaves of rank 2 with odd determinant

Recall from [BF08, Theorem 3.9] that, for each c2 ≥ 6, there exists an
irreducible component M(c2) of dimension 2c2−11 of MX(2, 1, c2) containing
a locally free sheaf F which satisfies:

H1(X,F (−1)) = 0.(4.1)

Ext2
X(F, F ) = 0,(4.2)

and the extra assumption H0(X,F ⊗OL(−1)) = 0, for some line L ⊂ X hav-
ing normal bundle OL⊕OL(−1). For c2 = 6, we have M(6) = MX(2, 1, 6) ∼=
Γ. For c2 ≥ 7, M(c2) is defined recursively as the unique component of
MX(2, 1, c2) which contains a sheaf F fitting into:

(4.3) 0→ F → G→ OL → 0,

where G is a general sheaf lying in M(c2 − 1). Here we are going to prove
the following result, which amounts to Part A of our main theorem.

Theorem 4.1. For any integer c2 ≥ 8, there is a birational map ϕ, generi-
cally defined by F 7→ Φ!(F ), from M(c2) to a generically smooth (2c2 − 11)-
dimensional component B(c2) of the locus:

(4.4) {F ∈ MΓ(c2 − 6, c2 − 5) |h0(Γ,V ⊗F) ≥ c2 − 6}.

We begin with a series of lemmas.

Lemma 4.2. Let c2 ≥ 7, and let F be a sheaf in MX(2, 1, c2), satisfying
(4.1). Then F belongs to the subcategory 〈U∗,Φ(Db(Γ))〉 of Db(X), and
Φ!(F ) is a vector bundle on Γ, of rank c2 − 6 and degree c2 − 5.

Proof. By stability of F and Serre duality, we have Hk(X,F (−1)) = 0 for
k = 0, 3. Using (4.1) and Riemann-Roch’s formula, we conclude:

Hk(X,F (−1)) = 0, for all k.

By Serre duality, this is equivalent to:

(4.5) ExtkX(F,OX) = 0, for all k.

This implies that the bundle F belongs to 〈U∗,Φ(Db(Γ))〉 ⊂
〈OX ,U∗,Φ(Db(Γ))〉.

By the definition (3.7) of Φ!, the stalk of Hk(Φ!(F )) over the point y ∈ Γ
is governed by:

(4.6) Hk+1(X,E ∗y ⊗F )⊗ωΓ,y.
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Let us check that (4.6) vanishes for all y ∈ Γ and for k 6= 0. For k = −1,
the statement is clear. Indeed, by stability, any non-zero morphism f : Ey →
F would be injective. Then f should be an isomorphism by Lemma 2.1, and
this is impossible.

To check the case k = 1, by Serre duality we can show Ext1
X(F,E ∗y ) = 0.

Recall by [BF08, Proposition 3.5] that Ey is globally generated, and we have
thus an exact sequence:

0→ K → O6
X → Ey → 0.

Dualizing it, we obtain:

0→ E ∗y → O6
X → K∗ → 0,

where K is a stable vector bundle of rank 4. Applying HomX(F,−), to this
sequence, in view of (4.5) we get:

Ext1
X(F,E ∗y ) = HomX(F,K∗) = 0,

where the last equality holds by stability (note that F has slope 1/2 while
K∗ has slope 1/4).

Finally, (4.6) vanishes for k = 2 again by stability. Indeed, H3(X,E ∗y ⊗F )
is dual to HomX(F,E ∗y ), and the slopes here are 1/2 and −1/2 so that this

homomorphism group is zero. We have thus proved that Φ!(F ) is a vector
bundle on Γ, for the dimension of H1(X,E ∗y ⊗F ) does not depend on y. By

Riemann-Roch we compute its rank as rk(Φ!(F )) = χ(F ⊗Ey) = c2 − 6.
Using Grothendieck-Riemann-Roch’s formula, one can easily compute the

degree of Φ!(F ). �

Lemma 4.3. Let c2 ≥ 7, and let F be a sheaf in MX(2, 1, c2), satisfying
(4.1). Then we have a functorial resolution of the form:

(4.7) 0→ AF ⊗U∗
ζF−→ Φ(Φ!(F ))→ F → 0,

where AF = Ext2
X(F,U)∗ has dimension c2 − 6.

Proof. To write down (4.7), we use the exact triangle (3.9). Note that by
Lemma 4.2 we know that F ∈ 〈U∗,Φ(Db(Γ))〉, and we need only to calculate
the groups ExtkX(F,U) for all k.

If k = 0, 3, we easily get ExtkX(F,U) = 0 by stability of the sheaves U
and F . Applying the functor HomX(F,−) to (3.1) we get Ext1

X(F,U) ∼=
HomX(F,U∗) = 0, where the vanishing follows from the stability of F and
U . By Riemann-Roch we get ext2

X(F,U) = c2 − 6. �

Lemma 4.4. Let c2 ≥ 8, and let F be a sheaf in MX(2, 1, c2), satisfying
(4.1). Then:

AF ∼= HomX(U∗,Φ(Φ!(F ))),(4.8)

Ext1
X(U∗, F ) ∼= Ext1

X(U∗,Φ(Φ!(F ))),(4.9)

ExtkX(U∗, F ) = 0, for k 6= 1.(4.10)

The map ζF in (4.7) coincides, up to conjugacy, with the natural evalua-
tion map.
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Proof. Let us first show HomX(U∗, F ) = 0. By contradiction, we consider
a non-zero map γ : U∗ → F . By the argument of Lemma 3.8 we have
ker(γ) ∼= OX . Then the cokernel of γ is a torsion sheaf with Chern classes
c1(cok(γ)) = 0, c2(cok(γ)) = c2 − 8 ≥ 0 and c3(cok(γ)) = 6 − c2 < 0, and
this is impossible by formula (2.1).

Now, in view of Lemma 4.3, we have the resolution (4.7). We apply to it
the functor HomX(U∗,−). Since HomX(U∗, F ) = 0, and U∗ is exceptional,
we get (4.8) and (4.9). It is now easy to show (4.10) also for k = 2, 3. Indeed,
for k ≥ 2, we have:

ExtkX(U∗, F ) ∼= ExtkX(U∗,Φ(Φ!(F ))) ∼= ExtkΓ(Φ∗(U∗),Φ!(F )) = 0,

since Φ∗(U∗) and Φ!(F ) are both sheaves on a curve, the first one by (3.21),
the second one by Lemma 4.2.

The last statement follows from the diagram:

HomX(U∗, AF ⊗U∗)⊗U∗
∼= //

∼=
��

HomX(U∗,Φ(Φ!(F )))⊗U∗

��

AF ⊗U∗
ζF // Φ(Φ!(F ))

where the left arrow is given by the isomorphism HomX(U∗, AF ⊗U∗) ∼= AF ,
the top one is obtained by (4.8), and the right arrow is the natural evaluation
map eU∗,Φ(Φ!(F )). �

Lemma 4.5. Let c2 ≥ 8, let F be a sheaf in MX(2, 1, c2) satisfying (4.1),
and set F = Φ!(F ).

i) The bundle F is simple, and satisfies h0(Γ,V ⊗F) = c2 − 6;
ii) setting e for the natural evaluation map:

e := eV∗,F : HomΓ(V∗,F)⊗V∗ → F ,

we get that H0(Φ(e)) agrees with ζF up to conjugacy;
iii) if F satisfies (4.2), then the natural map:

(4.11) H0(Γ,V ⊗F)⊗H0(Γ,V∗⊗F∗⊗ωΓ)→ H0(Γ,F ⊗F∗⊗ωΓ)

is injective.

Proof. Recall the notation AF = Ext2
X(F,U)∗, and the isomorphism

Φ∗(U∗) ∼= V∗ (cf. (3.21)). Since c2 ≥ 8 we can invoke Lemma 4.4. So,
we can use the natural isomorphisms (4.8), (4.9). We have thus:

AF ∼= HomΓ(V∗,F), Ext1
X(U∗, F ) ∼= Ext1

Γ(V∗,F),

and we have seen that AF has dimension c2 − 6. This proves the second
statement of (i).

Next, we apply the functor HomX(−, F ) to the fundamental exact se-
quence (4.7), and we use the fact that Φ! is right adjoint to Φ. The vanishing
(4.10) at k = 0 thus gives:
(4.12)

HomΓ(F ,F) ∼= HomΓ(Φ!(F ),Φ!(F )) ∼= HomX(Φ(Φ!(F )), F ) ∼= HomX(F, F ),

because F is stable, hence simple. So F is simple and we have proved (i).
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In order to show (ii), we prove thatH0(Φ(e)) agrees with the natural eval-
uation map eU∗,Φ(F), and we use Lemma 4.4. Since we have HomΓ(V∗,F) ∼=
HomX(U∗,Φ(F)) ∼= AF , the map e : HomΓ(V∗,F)⊗V∗ ∼= AF ⊗Φ∗(U∗) →
F by adjunction gives the map H0(Φ(e)) : AF ⊗U∗ → Φ(F). So, by func-
toriality of the evaluation map, eU∗,Φ(F) coincides with H0(Φ(e)), and we
are done. So (ii) is proved.

To prove (iii), we note that the map (4.11) is the transpose of the Petri
map Ext1

Γ(e,F), and we have to check that Ext1
Γ(e,F) is surjective as soon

as F satisfies (4.2). To see this, we write the long exact sequence obtained
applying HomX(−, F ) to (4.7) and we use (4.12), to obtain:

Ext1
X(F, F )→ Ext1

Γ(F ,F)
Ext1X(ζF ,F )
−−−−−−−→ Ext1

X(U∗, F )⊗A∗F → Ext2
X(F, F )→ 0,

where the last zero is due to Ext2
Γ(F ,F) = 0, since F is a sheaf on a curve.

Therefore, in order to prove our claim, we only have to look at the map
Ext1

X(ζF , F ) and to check that it agrees with Φ(Ext1
Γ(e,F)). But this is

clear, since:

Ext1
X(ζF , F ) = Ext1

X(Φ(Φ∗(ζF )), F ) = Φ(Ext1
Γ(Φ∗(ζF ),F)) = Φ(Ext1

Γ(e,F)).

�

Lemma 4.6. Given a non-split exact sequence of vector bundles on Γ:

(4.13) 0→ F ′ → F → F ′′ → 0,

assume rk(F ′) = deg(F ′) = 1, deg(F ) = rk(F ) + 1 and F ′′ µ-stable. Then
F is µ-stable.

Proof. Set r = rk(F ). We have deg(F ) = r + 1, rk(F ′′) = r − 1 and
deg(F ′′) = r. Assume by contradiction that F is not µ-stable, so it contains
a subsheaf K with µ(K) ≥ µ(F ) and rk(K) < r. Set s = rk(K) and
c = deg(K). The sequence (4.13) induces an exact sequence of torsion-free
sheaves:

0→ K ′ → K → K ′′ → 0,

with K ′′ ⊂ F ′′ and K ′ ⊂ F ′.
If K ′ = 0, then K ∼= K ′′ and so µ(K) < µ(F ′′) for F ′′ is µ-stable and

(4.13) is non-split. Now µ(K) = c/s ≥ (r + 1)/r = µ(F ) gives c > r + 1
because s < r, and similarly µ(K) = c/s < µ(F ′′) = r/(r−1) gives c(r−1) <
r2. So r2 − 1 < c(r − 1) < r2, which is impossible.

If rk(K ′) = 1, we have either deg(K ′) ≤ 0, or K ′ ∼= F ′. In the first case we

have deg(K ′′) ≥ deg(K) and so µ(F ) ≤ µ(K) ≤ deg(K′′)
s−1 = µ(K ′′) < µ(F ′′)

and again (r + 1)/r ≤ c/s < r/(r − 1) is impossible if s < r. In the
second case, we get (c − 1)/(s − 1) = µ(K ′′) < µ(F ′′) = r/(r − 1) and
c/s = µ(K) ≥ µ(F ) = (r + 1)/r. Using s < r, from the first inequality we
get (c − 1)(r − 1) < r(r − 1), so r + 1 > c, and plugging into the second
inequality we get cr > cs, which is absurd. �

We are now in position to prove the main result of this section.

Proof of Theorem 4.1. The proof goes by induction on c2 ≥ 8, but we first
need some results on the case c2 = 7. According to [BF08, Proposition
3.5], any sheaf F of MX(2, 1, 7) satisfies (4.1), so we may apply Lemma
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4.2 to F and we obtain that F = Φ!(F ) is a line bundle (hence stable) of
degree 2 on Γ. Since V has rank 2 and degree 1 (see Remark 3.12), applying
Riemann-Roch on Γ we get:

h0(Γ,V ⊗F) ≥ χ(Γ,V ⊗F) = 1.

Now let us look at c2 ≥ 8. Recall from [BF08, Theorem 3.9] that there
exists an irreducible component M(c2) of dimension 2c2− 11 of MX(2, 1, c2)
containing a vector bundle F satisfying (4.1), hence by semicontinuity there
exists an open dense subset of M(c2) where any vector bundle satisfies (4.1).
Thus, for any sheaf F in this open set, by Lemma 4.2 it follows that F =
Φ!(F ) is a vector bundle on Γ of rank c2−6 and degree c2−5, and it satisfies
h0(Γ,V ⊗F) = c2 − 6 by Lemma 4.5. The mapping that sends F to F is
injective for c2 ≥ 8, because, in view of Lemma 4.4, the sheaf F can be
recovered from F as the cokernel of the natural evaluation map:

HomX(U∗,Φ(F))⊗U∗ → Φ(F).

Let us now prove that, if F is general in M(c2), then the vector bundle
Φ!(F ) is stable over Γ. In fact we prove that, if F is a sheaf fitting into
(4.3), and G is general in M(c2− 1), then F = Φ!(F ) is stable over Γ. Since
stability is an open property by [Mar76], this will imply that Φ!(F ) is stable
for F general in M(c2). By induction, we may assume that Φ!(G) is a stable
vector bundle of rank c2 − 7 and degree c2 − 6.

Applying Φ! to (4.3), we get an exact sequence of bundles on Γ:

0→ Φ!(OL)[−1]→ F → Φ!(G)→ 0,

where Φ!(OL)[−1] is a line bundle of degree 1 by Lemma 3.15. Note that
this extension must be non-split. Indeed, F is simple in view of (4.12), hence
indecomposable. Moreover, deg(F) = rk(F) + 1, so we may apply Lemma
4.6 and conclude that F is stable.

We have thus proved that an open dense subset of M(c2) maps into the
locus defined by (4.4). This locus is equipped with a natural structure of
a subvariety of the moduli space MΓ(c2 − 6, c2 − 5). Its tangent space at
the point [F ] is identified with ker(Ext1

Γ(e,F)), while the obstruction sits
in cok(Ext1

Γ(e,F)), where again e = eV∗,F . Notice that, by Lemma 4.5, the
latter space vanishes if F satisfies (4.2).

We have thus proved that the mapping F 7→ F provides an open im-
mersion of a Zariski open dense subset of the (2d− 11)-dimensional variety
M(c2), into a Zariski open dense piece of B(c2). This finishes the proof. �

5. The moduli space MX(2, 1, 7) as a blow-up of the Picard
variety

In this section, we set up a more detailed study of the moduli space
MX(2, 1, 7), of which we give a biregular (rather than birational) description.
In fact, the map ϕ : F 7→ Φ!(F ) sends the whole space MX(2, 1, 7) to the
abelian variety Pic2(Γ). In turn, Pic2(Γ) contains a copy of the Hilbert
scheme H 0

1 (X), via the map ψ (see Proposition 3.14), as a subvariety of
codimension 2. The relation between these varieties is given by the main
result of this section, which provides Part B of our main theorem.
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Theorem 5.1. The mapping ϕ : F 7→ Φ!(F ) gives an isomorphism of the
moduli space MX(2, 1, 7) to the blow-up of Pic2(Γ) along the subvariety W =
ψ(H 0

1 (X)). The exceptional divisor consists of the sheaves in MX(2, 1, 7)
which are not globally generated.

The proof of this result occupies the rest of the paper. The strategy goes
as follows. First, we show that MX(2, 1, 7) is isomorphic to the the Quot
scheme of quotients of V with Hilbert polynomial t + 1. Then, we prove
that this Quot scheme is isomorphic to the blow-up of Pic2(Γ) along the
subvariety W . In doing so, we will first need a detailed analysis of the locus
in MX(2, 1, 7) of sheaves that are not globally generated.

5.1. Characterization and properties of globally generated sheaves.
We first study in detail the condition for a sheaf in MX(2, 1, 7) to be globally
generated. In particular, we need to show that a sheaf in MX(2, 1, 7) is not
globally generated iff it fails to be so on a line L ⊂ X, see the next lemma.

Lemma 5.2. Let F be a sheaf in MX(2, 1, 7). Then, we have:

(5.1) Hk(X,F (−1)) = Hk(X,F ) = 0, for k = 1, 2.

Moreover, either F is locally free, or there exist a bundle E in MX(2, 1, 6),
and a line L ⊂ X, and an exact sequence:

0→ F → E → OL → 0.

Furthermore, the following statements are equivalent:

i) the sheaf F is not globally generated;
ii) the vector space HomX(U∗, F ) is non-zero;

iii) there exists a line L ⊂ X, and a long exact sequence:

0→ OX → U∗ → F → OL(−1)→ 0.(5.2)

Proof. The first two statements are taken from [BF08, Proposition 3.5], and
we only have to prove the equivalence of (i), (ii) and (iii). Clearly condition
(iii) implies both conditions (i) and (ii).

Let us prove (ii) ⇒ (iii). Consider a non-zero map γ : U∗ → F . The
argument of Lemma 3.8 implies ker(γ) ∼= OX and the cokernel T of γ has
c1(T ) = 0, c2(T ) = −1, c3(T ) = −1. So we have T ∼= OL(−1), for some
line L ⊂ X, if T is supported on a Cohen-Macaulay curve. In turn, this
holds if the support of T has no isolated or embedded points, which follows
once we prove H0(X,T (−1)) = 0. But, if I if the image of the middle
map in (5.2), we have H1(X, I(−1)) = 0, so by H0(X,F (−1)) = 0, we have
H0(X,T (−1)) = 0, and we are done.

It remains to show (i) ⇒ (ii). We follow here an argument suggested
by the referee, that simplifies our previous proof. Let F be a sheaf in
MX(2, 1, 7). We assume HomX(U∗, F ) = 0, and we want to prove that
F is globally generated.

First, we observe that HomX(U∗, F ) = 0 implies that F (1) lies in the sub-
category ⊥(U∗) of Db(X), and that this subcategory is 〈Φ(Db(Γ)),OX(1)〉.
The second assertion is clear from Db(X) = 〈OX ,U∗,Φ(Db(Γ))〉, since mu-
tating OX through 〈U∗,Φ(Db(Γ))〉 we get OX(1). The relation F ∈ ⊥(U∗)
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amounts to show Ext3−k
X (F (1),U∗) = 0 for 0 ≤ k ≤ 3, or by Serre du-

ality ExtkX(U∗, F ) = 0 for 0 ≤ k ≤ 3. This is clear for k = 2, 3 by the
argument proving (4.10) in Lemma 4.4. Our assumption HomX(U∗, F ) = 0
gives this vanishing for k = 0, so we can deduce the vanishing for k = 1 by
Hirzebruch-Riemann-Roch formula (3.11).

Now, we know that Hk(X,F ) = 0 for k > 0, so the decomposition
〈Φ(Db(Γ)),OX(1)〉 gives an exact triangle:

H0(X,F )⊗OX(1)→ F (1)→ Φ(Φ∗(F (1)).

We will be done if we show H0(Φ(Φ∗(F (1))) = 0, for in this case the above
triangle show that F is globally generated. Note that, by definition of Φ∗ and
Φ! (see (3.8) and (3.7)), we have Φ∗(F (1)) ∼= Φ!(F )⊗ω∗Γ[2]. But we have

proved that Φ!(F ) is a sheaf, so Φ∗(F (1)) is a sheaf concentrated in degree
−2, supported on the curve Γ. This clearly implies H0(Φ(Φ∗(F (1))) = 0,
and we are done. �

5.2. Sheaves on the Fano threefold and Quot scheme on the
dual curve. We refer to [HL97] for the description and properties of
Grothendieck’s Quot scheme. We let P = QuotΓ(V, t + 1) be the Quot
scheme of quotients of V having Hilbert polynomial t+ 1. An element of P
is a quotient Q of V of rank 1 and degree 3. The dual of the kernel of the map
V → Q is a line bundle of degree 2 on Γ, so we have a map v : P→ Pic2(Γ).

Proposition 5.3. The moduli space MX(2, 1, 7) is isomorphic to the Quot
scheme P.

Proof. We would like to find two maps between MX(2, 1, 7) and P that are
mutually inverse. We now define a map k : MX(2, 1, 7) → P. To do so, let
F be any sheaf in MX(2, 1, 7) set L = Φ(F ) and recall that, by (4.7), F is
the cokernel of a canonically defined map ζF : U∗ → Φ(L). Apply Φ∗ and
recall that Φ∗(U∗) ∼= V∗ (Proposition 3.10) and that Φ∗(Φ(L)) ∼= L lies in
Pic2(Γ) (Lemma 4.2). Then, with F we associate a non-zero map V∗ → L
and its transpose gives an injective map L∗ → V, whose cokernel we define
as k(F ) ∈ P.

Now we define a map h : P→ MX(2, 1, 7), inverse of k. To do so, consider
a quotient Q of V and let L∗ be the kernel of the projection V → Q. The
sheaf L is a line bundle of degree 2 on Γ. Transposing the injection L∗ → V
we get a non-zero map aQ : V∗ → L. We can now take, by adjunction, the
map:

εQ = H0(Φ(aQ)) : U∗ → Φ(L).

We shall prove that FQ = cok(εQ) is a sheaf in MX(2, 1, 7). We distinguish
two cases, according to whether aQ is surjective or not.

i) If aQ is surjective, then K = ker(aQ) is a line bundle on Γ of degree −3,
and we have:

(5.3) 0→ K → V∗ → L → 0.

Note that, using stability of the Ey’s, we can easily check that Φ(L)
and Φ(K) are vector bundles, concentrated in degree 0 and 1 respec-
tively, and the rank and Chern classes of these bundles are determined
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by Grothendieck-Riemann-Roch. Applying Φ to (5.3) we get:

0→ U∗
εQ−→ Φ(L)→ Φ(K)[1]→ U(1)→ 0.

Then one can easily see that FQ, being the image of the middle map
above, is reflexive and lies in MX(2, 1, 7).

ii) Assume now that aQ is not surjective. We set K = ker(aQ) and M =
Im(aQ) and we have rk(M) = 1. Note that degM ≥ 1 by the same
argument of Lemma 3.13, hence in fact deg(M) = 1. We have then the
exact sequence:

(5.4) 0→M→ L→ Oy → 0.

The line bundleM obviously lies in the locus W̃ defined by Lemma 3.15.
Then we have, by (3.31), that H0(Φ(M)) ∼= U∗ and H1(Φ(M)) ∼= OM ,
where M ⊂ X is a line. So, applying Φ to (5.4), we get:

0→ U∗
εQ−→ Φ(L)→ Ey → OM → 0.

Therefore the sheaf FQ = cok(εQ) lies in MX(2, 1, 7), and we know
moreover that FQ is not locally free over M and that F ∗∗Q

∼= Ey.

We have thus completed the construction of h. It is now straightforward to
check that h and k are mutually inverse. �

5.3. Quot scheme and the blow-up of the Picard variety. Recall that
we proved in Proposition 3.14 that the Hilbert scheme of lines contained in X
is isomorphic to a subvariety W of Pic2(Γ), and denote by ι : W ↪→ Pic2(Γ)
the inclusion. We consider the blow-up B of Pic2(Γ) at W , and we denote
by E the exceptional divisor.

Proposition 5.4. The Quot scheme P is isomorphic to the blown-up Picard
variety B.

We need the following lemma. Let us denote by r and s the projections
from Γ× Pic2(Γ) onto Γ and Pic2(Γ), respectively:

Γ× Pic2(Γ)
r

yyssssssss s

''OOOOOOO

Γ Pic2(Γ)

A Poincaré bundle P on Γ×Pic2(Γ) is a line bundle satisfying P|Γ×L ∼= L,

for all L ∈ Pic2(Γ).

Lemma 5.5. There is a choice of a Poincaré line bundle P on Γ×Pic2(Γ)
that gives:

s∗(r
∗(V)⊗P) ∼= OPic2(Γ),

R1s∗(r
∗(V)⊗P) ∼= ι∗(ωW ),

Rs∗(r
∗(V∗⊗ωΓ)⊗P∗) ∼= IW [−1].

Proof. We will first choose P to be any Poincaré line bundle on Γ×Pic2(Γ),
and indicate at the end of the proof how to modify P so that it has the
desired properties.
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Recall that W is purely 1-dimensional subscheme of Pic2(Γ), see Propo-
sition 3.14. Moreover, by the same proposition, W is Cohen-Macaulay, as it
can be seen using the formalism of determinantal subvarieties, as explained
in [ACGH85].

As a first step, we compute Rks∗(r
∗(V)⊗P) and

Rks∗(r
∗(V∗⊗ωΓ)⊗P∗). These sheaves are zero for k 6= 0, 1. Fur-

ther, we have:

h0(Γ,V ⊗PL) = 2 h1(Γ,V ⊗PL) = 1 iff L ∈W ,

h0(Γ,V ⊗PL) = 1 h1(Γ,V ⊗PL) = 0 iff L ∈ Pic2(Γ) \W .

This says that s∗(r
∗(V) ⊗ P) is a line bundle M on Pic2(Γ), and that

R1s∗(r
∗(V)⊗P) is ι∗(N ), where N is an invertible sheaf on W . Further,

we have:

h0(Γ,V∗⊗ωΓ⊗P∗
L) = 1 h1(Γ,V∗⊗ωΓ⊗P∗

L) = 2 iff L ∈W ,

h0(Γ,V∗⊗ωΓ⊗P∗
L) = 0 h1(Γ,V∗⊗ωΓ⊗P∗

L) = 1 iff L ∈ Pic2(Γ) \W .

So s∗(r
∗(V ∗⊗ωΓ)⊗P∗) = 0, and Rs∗(r

∗(V∗⊗ωΓ)⊗P∗) is a sheaf on
Pic2(Γ), concentrated in degree 1, and having (generic) rank 1.

To relate these two calculations, we use Grothendieck duality, which gives:

(5.5) D(Rs∗(r
∗(V)⊗P)) ∼= Rs∗(r

∗(V∗⊗ωΓ)⊗P∗)[1].

We have D(ι∗(N )) ∼= ι∗(N ∗⊗ωW )[2], since W is Cohen-Macaulay of codi-
mension 2 in Pic2(Γ). Looking at the spectral sequence associated with (5.5),
we get that Rs∗(r

∗(V∗⊗ωΓ)⊗P∗)[1] is the kernel of a surjective map:

M ∗ → ι∗(N
∗⊗ωW ).

Hence we get the isomorphisms:

Rs∗(r
∗(V∗⊗ωΓ)⊗P∗) ∼= IW ⊗M ∗[−1], N ∼= M ⊗ ι∗(ωW ).

It is now clear that the desired Poincaré line bundle is obtained as
P ⊗M ∗. �

Proof of Proposition 5.4. Consider the blow-up B of Pic2(Γ) along the sub-
variety W , and let b : B → Pic2(Γ) denote the blow-up map. Recall that
B is the projectivization of the sheaf IW . So, a point z of B is uniquely
given by a surjection IW → Ob(z). In fact, a non-zero map IW → Ob(z) can
only be a surjection, since Ob(z) has no non-trivial sub-sheaves. Summing
up, points of B are just non-zero maps IW → Ob(z).

We consider now the functor Υ : Db(Pic2 Γ)→ Db(Γ) defined by Υ(−) =
Rr∗(s

∗(−) ⊗P), and its left adjoint functor Υ∗(−) = Rs∗(r
∗(−) ⊗P∗ ⊗

ωΓ)[1]. Then the previous lemma says:

Υ∗(V∗) ∼= IW .
Recall now that b(z) represents a line bundle of degree 2 on Γ, namely

Pb(z). Let us abbreviate L = Pb(z). We consider the following identifica-
tions:

HomPic2(Γ)(IW ,Ob(z)) ∼= HomPic2(Γ)(Υ
∗(V∗),Ob(z)) ∼= HomΓ(V∗,Υ(Ob(z))) ∼= HomΓ(V∗,L).

Recall that a point of P is a quotient Q of V with rank 1 and degree 3.
We already pointed out that such a quotient V → Q determines a kernel
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L∗ (with L ∈ Pic2(Γ)) and so a non-zero map a : V∗ → L. Vice-versa, a
non-zero map a : V∗ → L determines Q as the cokernel of its transpose.

Now the correspondence between B and P is clear. Namely, a point z
of B is a non-zero element of HomPic2(Γ)(IW ,Ob(z)) ∼= HomΓ(V∗,L), so z

corresponds to a map a : V∗ → L, and we associate with z the cokernel of
the map L∗ → V, obtained transposing a. This cokernel is an element of Q.
Clearly the construction is reversible, and the proposition is proved. �

The proof of Theorem 5.1 is now almost completed. The only statement
that still needs to be checked is that the exceptional divisor E of the blow-up
is mapped by our isomorphism onto the set of sheaves in MX(2, 1, 7) that
are not globally generated. To see this, recall that an element w ∈ B lies in
E if and only if it is mapped by b to a point of W . In turn, a line bundle
L = Φ!(F ) lies in W if and only if it satisfies h0(Γ,V ⊗L) = 2. But this
is equivalent to homX(U∗,Φ(L)) = 2, which in turn happens if and only if
HomX(U∗, F ) 6= 0, as one sees immediately applying HomX(U∗,−) to (4.7).
Therefore, by Lemma 5.2, we get that w ∈ B lies in E if and only if the
corresponding sheaf Fw ∈ MX(2, 1, 7) fails to be globally generated. This
concludes the proof.
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