Licence 2 – Math31 Analyse

SÉRIES NUMÉRIQUES

Exercice 1. — Soient $\sum u_n$ et $\sum v_n$ des séries à termes positifs. Montrer que la série de terme général $\max(u_n, v_n)$ est convergente si et seulement si les séries de terme général u_n et v_n sont les deux convergentes.

Exercice 2. — Calculer la somme des séries dont le terme général u_n est donné ci-dessous :

a)
$$\ln \frac{n(n+2)}{(n+1)^2}$$
 $(n \ge 1)$ b) $\frac{1}{(n+1)(n+2)(n+3)}$ $(n \ge 0)$
c) $\frac{3^n}{7^{n-2}}$ $(n \ge 2)$ d) $\ln(1+x^{2^n})$ $(n \ge 0, 0 < x < 1)$

Exercice 3. — Étudier la nature des séries dont le terme général u_n est donné ci-dessous (comparaison à une série géométrique)

a)
$$\frac{3^n + n^4}{5^n - 3^n}$$
 b) $\frac{\cosh(2n)}{\cosh(3n)}$ c) $\left(\frac{1}{2} + \frac{1}{2n}\right)^n$
d) $\tanh(n+a) - \tanh(n)$ $(a \in \mathbb{R})$ e) $(3 + (-1)^n)^{-n}$ f) $\frac{1}{1 + x^{2n}}$ $(x \in \mathbb{R})$

Exercice 4. — Étudier la nature des séries dont le terme général u_n est donné ci-dessous (comparaison à une série de Riemann)

$$\begin{array}{lll} a) \, 1 - \cos \frac{1}{n} & b) \, \sqrt[n]{\frac{n}{n+1}} - 1 & c) \, n^{-1-2/n} \\ d) \, e^{\cos(1/n)} - e^{\cos(2/n)} & e) \, x^{\ln n} & (x \in \mathbb{R}_+^*) & f) \, n^2 a^{\sqrt{n}} & (a \in \mathbb{R}_+^*) \end{array}$$

Exercice 5. — Soit $\sum u_n$ une série réelle absolument convergente. Montrer que, pour tout entier p > 0, la série $\sum u_n^p$ est convergente.

Exercice 6. —

a. Soient x et y deux réels positifs. Montrer que

$$\sqrt{xy} \le x + y$$
.

b. Soit $\sum u_n$ une série convergente à termes positifs. Déduire de a. que la série de terme général $\sqrt{u_n}/n$ est convergente.

Exercice 7. — Étudier la nature des séries dont le terme général u_n est donné ci-dessous (règles de Cauchy et d'Alembert)

$$a) \frac{n!}{a^n} (a > 0) \qquad b) \frac{n!}{n^n} \qquad c) \frac{a^n}{n^a} (a > 0) \qquad d) \left(a + \frac{1}{n} \right)^n (a > 0)$$

$$e) \frac{a^n}{(1+a)(1+a^2)\dots(1+a^n)} (a > 0) \qquad f) \left(1 + \frac{x}{n} \right)^{-n^2} (x > 0) \qquad g) \left(\frac{\sin^2 n}{n} \right)^n$$

Exercice 8. — Déterminer la nature de la série de terme général u_n , lorsque u_n est donné par (comparaison à une série de Bertrand)

a)
$$u_n = (1 - e^{1/n^2})\sqrt{\ln n}$$
 b) $u_n = \frac{1}{\ln n!}$ $u_n = n^{n^{-a}} (a > 0)$

Exercice 9. — Étudier la nature de la série de terme général $u_n = \frac{a^n + 1}{a^{2n} + n}$, (a > 0).

Licence 2 – Math31 Analyse

Exercice 10. — Étudier la convergence et la convergence absolue des séries dont le terme général u_n est donné ci-dessous (critère de Leibniz et d'Abel)

$$a$$
) $(-1)^n$ arctan $\frac{1}{n}$ b) $\sin\left(\left(n+\frac{a}{n}\right)\pi\right)$ $(a \in \mathbb{R})$ $c)$ $\frac{(-1)^n}{n^a+(-1)^n}$ $(a \neq 0)$

$$d) \frac{(-1)^n}{n+2\sin n} \quad e) (-1)^n \left(\sqrt{n^2+1}-n\right) \quad f) \ln \left(1+\frac{\cos n}{\sqrt{n}}\right) \quad g) \frac{\sin 2n}{n^2-n+1}$$

Exercice 11. — On pose $e = \sum_{k=0}^{+\infty} \frac{1}{k!}$.

a. Montrer que pour tout n > 0, on a

(1)
$$\sum_{k=0}^{n} \frac{1}{k!} < e < \sum_{k=0}^{n} \frac{1}{k!} + \frac{1}{n \cdot n!}.$$

b. En déduire que e est irrationnel. (Si e = a/q, appliquer (1) avec n = q).

Exercice 12 (difficile). — Montrer par le critère de Cauchy que la série $\sum_{n\geq 1} \frac{\cos \ln n}{n}$ diverge.

Exercice 13. — Soit ϕ une bijection de $\mathbb{N}^* \to \mathbb{N}^*$.

- a. Donner un exemple d'une telle application (différente de l'identité).
- b. On considère la série de terme général

$$u_n = \frac{\phi(n)}{n^2}, \quad n \ge 1$$

Soit (S_n) la suite des sommes partielles associée. Montrer que, pour tout $n \ge 1$, on a la minoration

$$S_{2n} - S_n \ge \frac{1}{8}$$

c. En déduire que la série diverge vers $+\infty$.

Exercice 14. — Soit (u_n) une suite de réels positifs. Comparer la nature des séries de terme général

$$u_n, \qquad \frac{u_n}{1+u_n}, \qquad \frac{u_n}{1-u_n}$$