

Exercice 1. Dans l'espace affine \mathbb{Q}^4 de coordonnées (x_1, x_2, x_3, x_4) , pour $\lambda \in \mathbb{Q}$, considérons :

$$D: \left\{ \begin{array}{l} x_1+x_3-x_4+1=0, \\ x_2+x_4-1=0. \end{array} \right. \qquad D_{\lambda}: \left\{ \begin{array}{l} -x_1+x_2-x_3+x_4=-2, \\ x_1-x_2-x_3+\lambda x_4=\lambda. \end{array} \right.$$

Montrer que D et D_{λ} sont deux plan affines, dont on donnera les directions. Montrer que $D \cap D_{\lambda}$ est réduit à un seul point. Que vaut aff $(D \cup D_{\lambda})$?

Exercice 2. Soit $(O, \vec{u}_1, \dots, \vec{u}_n)$ repère d'un espace affine \mathcal{E} sur \mathbb{K} et $\mathcal{R} = (P_0, \dots, P_n) \in \mathcal{E}^{n+1}$ points de \mathcal{E} de coordonnées cartésiennes (X_0, \dots, X_n) avec $X_i = {}^t(1, x_{1,i}, \dots, x_{n,i}) \in \mathbb{K}^{n+1}$.

- 1. Exprimer le fait que \mathcal{R} est un repère affine en fonction des $(x_{i,j})$.
- 2. Dans ce cas, donner les coordonnées en \mathcal{R} des (n+1) points $(O, O + \vec{u}_1, \dots, O + \vec{u}_n)$.

Exercice 3. Soit $\mathcal{R} = (P_0, P_1, P_2)$ repère affine d'un plan affine \mathcal{E} et $(\lambda_0, \lambda_1, \lambda_2)$ coordonnées barycentriques de $P \in \mathcal{E}$. Notons L_i la droite joignant les points de $\{P_j \mid j \in [0, 2] \setminus \{i\}\}$.

- 1. Exprimer en les λ_i le fait que P n'appartient pas à $L_0 \cup L_1 \cup L_2$.
- 2. Exprimer en les λ_i le fait que (PP_i) n'est pas parallèle à L_i .
- 3. Soit (PP_i) non parallèle à L_i pour i=0,1,2 et notons $Q_i=(PP_i)\cap L_i$. Calculer les coordonnées barycentriques de (Q_0,Q_1,Q_2) en \mathcal{R} puis celles de P en les repères (P_i,Q_i) .

Exercice 4 (Théorème de Gergonne). Soit A, B, C, A', B', C' comme dans le théorème de Ménélaüs, avec (AA'), (BB'), (CC') concourantes en M. Montrer :

$$\frac{A'M}{A'A} + \frac{B'M}{B'B} + \frac{C'M}{C'C} = 1.$$

Exercice 5. Considérons \mathbb{R}^n muni de la topologie usuelle.

- 1. Soit A l'intérieur de $C \subset \mathbb{R}^n$ convexe. Supposons $A \neq \emptyset$. Montrer que A est dense dans C.
- 2. Montrer que l'enveloppe convexe d'une partie finie de \mathbb{R}^n est compacte.

Exercice 6. Soit (A_0, \ldots, A_n) un repère affine de \mathcal{E} espace affine sur \mathbb{C} et soit $B_i = A_{i+1}$ pour $i = 0, \ldots, n-1$, $B_n = A_0$. Justifier qu'il existe unique $\varphi : \mathcal{E} \to \mathcal{E}$ affine avec $\varphi(A_i) = B_i$, $\forall i = 0, \ldots, n$, puis :

- 1. donner la matrice de φ en $\mathcal{R} = (A_0, \dots, A_n)$ puis en $\mathcal{S} = (A_0, \overrightarrow{e}_0, \dots, \overrightarrow{e}_n)$ où $\overrightarrow{e}_i = \overrightarrow{A_0 A_i}$;
- 2. montrer que φ est d'ordre n+1 et possède un unique point fixe O, que l'on trouvera;
- 3. trouver n droites $O + \text{vect}(u_k)$ où φ se restreint à $\varphi(O + \lambda u_k) = O + \lambda \zeta^k u_k$ où $\zeta = e^{\frac{2\pi i}{n+1}}$.

Exercice 7. Trouver, selon $\lambda \in \mathbb{R}$, tous les points fixes de $\varphi : \mathbb{R}^3 \to \mathbb{R}^3$ définie par :

(1)
$$\varphi(x_1, x_2, x_3) = (-x_1 - 2, x_1 - x_2 - 2x_3, -x_1 + x_3 - \lambda).$$

Exercice 8. Soit $O \neq Q$ points d'un espace affine \mathcal{E} de dimension $n < \infty$. Soit $\mathcal{F}, \mathcal{G} \subset \mathcal{E}$ sous espaces affines avec $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{G}} \oplus \overrightarrow{\mathcal{F}}$. Soit φ (resp. ψ) la symétrie d'axe \mathcal{F} (resp. \mathcal{G}) parallèle à $\overrightarrow{\mathcal{G}}$ (resp. à \mathcal{F}). On note aussi σ_O (resp. σ_O) la symétrie centrale par rapport à O (resp. Q).

- 1. Décrire le sous groupe $\langle \varphi, \psi \rangle \subset GA(\mathcal{E})$.
- 2. Soit G le sous groupe $\langle \sigma_O, \sigma_Q \rangle \subset GA(\mathcal{E})$. Montrer que $G \simeq \mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$.
- 3. Dire si $\varphi \circ \sigma_O$ possède des points fixes puis en donner la décomposition canonique.
- 4. Décrire le sous groupe $\langle \sigma_O, \varphi \rangle \subset GA(\mathcal{E})$.

Exercice 9. Soit $\varphi : \mathcal{E} \to \mathcal{E}$ affine avec Fix $(\varphi) = \{O\}$. Quelles translations commutent avec φ ?

Exercice 10. Une symétrie-translation est la composition d'une symétrie et d'une translation.

- 1. Montrer que φ affine est une symétrie-translation ssi φ^2 est une translation.
- 2. Que peut-on dire de la décomposition canonique d'une symétrie-translation?
- 3. Soit φ définie par (1). Montrer que φ est une symétrie-translation puis trouver la décomposition canonique de φ .